Math, asked by aditya3720, 1 year ago


 \sqrt{x {}^{p - q } }  \times  \sqrt{x} {}^{q - a}  \times   \sqrt{x {}^{a - p} }  =

Answers

Answered by pratyush4211
13

 \sqrt{ {x}^{p - q} }  \times  \sqrt{ {x}^{q - a} }  \times  \sqrt{ {x}^{a - p} }

According to Law of Exponent.

If

{x}^{a} \times  {x}^{b }=  {x}^{a + b}

Using This.

 \sqrt{ {x}^{p - q} }  \times  \sqrt{ {x}^{q - a} }  \times  \sqrt{ {x}^{a - p} }  \\  \\  =  \sqrt{ {x}^{(p - q) + (q - a) + (a - p)} }  \\  \\  =  \sqrt{ {x}^{ \cancel{p} - q + q - a + a \cancel{ - p}} }  \\  \\  =  \sqrt{ {x}^{  \cancel{- q} +  \cancel{q} - a + a} }  \\  \\  =  \sqrt{ {x}^{  \cancel{- a }+  \cancel{a}} }  \\  \\  =  \sqrt{ {x}^{0} }

As we

 {x}^{0}  = 1

So,

 \sqrt{ {x}^{0} }  \\  \\  \sqrt{1}  \\  \\  = 1

 \underline{ \mathbf{Answer = 1}}


aditya3720: thanks
pratyush4211: :)
Anonymous: Great !!
pratyush4211: :-)
Similar questions