Math, asked by abhinav199730spa7l13, 1 year ago


 \sqrt{x}  +  \sqrt{x  -   \sqrt{1 - x  \: } }  = 1 \: find \: the \: value \: of \: x

Answers

Answered by shashankavsthi
1
okay so your answer is here...

 \sqrt{x}  +  \sqrt{x -  \sqrt{1 - x} }  = 1 \\  \\  \sqrt{x}  - 1 =  -  \sqrt{x -  \sqrt{1 - x} }  \\ sq \: both \: sides \\ x + 1 - 2 \sqrt{x}  = x -  \sqrt{1 - x}  \\ 1 - 2 \sqrt{x}  =  -  \sqrt{1 - x}  \\ sq.again \\ 1 + 4x - 4 \sqrt{x}  = 1 - x \\ 5x - 4 \sqrt{x}  = 0 \\  \sqrt{x} (5 \sqrt{x}  - 4) = 0 \\  \\ either \: x = 0 \: or \: 5 \sqrt{x}  = 4 \:  \: x =  \frac{16}{25}
hope it will help you.
Similar questions