Math, asked by harshit18072004, 1 year ago


  {t}^{3}  +  {(1 \div t)}^{3}  = 52
then find
 {t}^{2}  +  {(1 \div t)}^{2}

Answers

Answered by LovelyG
21

Answer:

\large{\underline{\boxed{\sf t^2 + \dfrac{1}{t^2}= 14 }}}

Step-by-step explanation:

Given that ;

 \sf t ^{3}  +  \frac{1}{t^{3} }  = 52 \\  \\ \sf (t +  \frac{1}{t})^{3}  - 3 \: . \: t \: . \:  \frac{1}{t} (t +  \frac{1}{t} ) = 52 \\  \\ \sf (t +  \frac{1}{t})^{3}  -3(t +  \frac{1}{t} ) = 52

Let (t + \sf \dfrac{1}{t} ) = x,

 \sf x {}^{3}  - 3x = 52 \\  \\ \sf x^{3}  - 3x - 52 = 0 \\  \\ \sf x {}^{3}  - 4x {}^{2}  + 4x {}^{2}  - 16x + 13x - 52 = 0 \\  \\ \sf x^{2} (x - 4) + 4x(x - 4) + 13(x - 4) = 0 \\  \\ \sf (x - 4)( {x}^{2}  + 4x + 13) = 0

Here, we get

x = 4 or x² + 4x + 13 = 0

On solving the second equation ;

x² + 4x + 13 = 0

On comparing the given equation with ax² + bx + c = 0, so

  • a = 1
  • b = 4
  • c = 13

Discriminant = b² - 4ac

⇒ D = (4)² - 4 * 1 * 13

⇒ D = 16 - 52

⇒ D = - 36

∴ D < 0

So, no real roots exist.

_______________________

Here, we got the value of x = 4.

\sf (t +  \frac{1}{t}) = 4

On squaring both sides ;

\sf (t +  \frac{1}{t})^{2}   = (4) {}^{2}  \\  \\ \implies \sf  {t}^{2}  +  \frac{1}{ {t}^{2} }  + 2 \: . \:t  \: . \:  \frac{1}{t}  = 16 \\  \\ \implies \sf  {t}^{2}  +  \frac{1}{ {t}^{2} } + 2 = 16 \\  \\ \implies \sf  {t}^{2}  +  \frac{1}{ {t}^{2} } = 16 - 2 \\  \\ \boxed{ \bf  \therefore \:  {t}^{2}  +  \frac{1}{ {t}^{2} } = 14}

Answered by Anonymous
15

Solution :-

As given

 t^3 + \dfrac{1}{t^3} = 52

Now as we know :-

a³ + b³ = (a + b)³ - 3ab(a + b) ....(i)

a² + b² = (a + b)² - 2ab .....(ii)

By using our first equation

 t^3 + \dfrac{1}{t^3}  = \left( t + \dfrac{1}{t} \right)^3 - 3\times t \times \dfrac{1}{t} \left( t + \dfrac{1}{t} \right) = 52

 \left( t + \dfrac{1}{t} \right)^3 - 3\left( t + \dfrac{1}{t} \right) = 52

Now let

 \left( t + \dfrac{1}{t} \right) = y

Then

 y^3 - 3y = 52

 \implies y^3 - 3y - 52 = 0

Now we will put y = 4 (via hit and trial)

 (4)^3 - 3(4) - 52 = 0

 \implies 64 - 12 - 52 = 0

\implies 64 - 64 = 0

Now as 4 is a factor

→ (y-4) is a factor of y³ - 3y - 52

Now via dividing it by (y - 4) we get

y² + 4y + 13 as a quotient

Now as we can clearly see that

D = 4² - 4 × 13

D = 16 - 52

D = - 36

So discriminant is negative hence it will not give any real roots.

Hence y = 4

 \implies \left( t + \dfrac{1}{t} \right) = 4

Now the Value of

\implies t^2 + \dfrac{1}{t^2} = \left( t + \dfrac{1}{t} \right)^2 - 2 \times t \times \dfrac{1}{t}

 \implies t^2 + \dfrac{1}{t^2} = (4)^2 - 2

 \implies t^2 + \dfrac{1}{t^2} = 16 - 2

 \implies t^2 + \dfrac{1}{t^2} = 14

Similar questions