Math, asked by itzAshuu, 8 months ago


tan {}^{ - 1} \frac{1}{4}  + 2tan {}^{ - 1}  \frac{1}{5} + tan {}^{ - 1}   \frac{1}{6}  + tan {}^{ - 1}  \frac{1}{x}  =  \frac{\pi}{4}
{\bf{\green{Solve\:the equation\:for\:x}}}⬆️⬆️
_______________________!!

Answers

Answered by amitkumar44481
10

AnsWer :

- 461 / 9.

SolutioN :

 \tt \mapsto {tan}^{ - 1}   \bigg(\dfrac{1}{4} \bigg) + 2 {tan}^{ - 1}\bigg( \dfrac{1}{5} \bigg)+  {tan}^{ - 1} \bigg(\dfrac{1}{6 }\bigg)  +  {tan}^{ - 1}   \bigg(\dfrac{1}{x}\bigg)=\dfrac{\pi}{4}

Now, We know

2 tan^-1 x = tan^-1( 2x / 1 - x² )

 \tt \mapsto {tan}^{ - 1}   \bigg(\dfrac{1}{4} \bigg) +  {tan}^{ - 1}\bigg( \dfrac{ \frac{2}{5} }{1 -  \frac{1}{ {5}^{2} } } \bigg)+  {tan}^{ - 1} \bigg(\dfrac{1}{6 }\bigg)  +  {tan}^{ - 1}   \bigg(\dfrac{1}{x}\bigg)=\dfrac{\pi}{4}

 \tt \mapsto {tan}^{ - 1}   \bigg(\dfrac{1}{4} \bigg) +  {tan}^{ - 1}\bigg(   \dfrac{5}{12} \bigg)+  {tan}^{ - 1} \bigg(\dfrac{1}{6 }\bigg)  +  {tan}^{ - 1}   \bigg(\dfrac{1}{x}\bigg) = {tan}^{ - 1} 1.

 \tt \mapsto {tan}^{ - 1}   \bigg(\dfrac{ \frac{1}{4} +  \frac{5}{12}  }{1 -  \frac{5}{48} } \bigg) +    {tan}^{ - 1} \bigg(\dfrac{1}{6 }\bigg)  +  {tan}^{ - 1}   \bigg(\dfrac{1}{x}\bigg) = {tan}^{ - 1} 1.

 \tt \mapsto {tan}^{ - 1}   \bigg( \dfrac{32}{43} \bigg) +    {tan}^{ - 1} \bigg(\dfrac{1}{6 }\bigg)  +  {tan}^{ - 1}   \bigg(\dfrac{1}{x}\bigg) = {tan}^{ - 1} 1.

 \tt \mapsto {tan}^{ - 1}   \bigg( \dfrac{192 + 43}{258 - 32} \bigg) +  {tan}^{ - 1}   \bigg(\dfrac{1}{x}\bigg) = {tan}^{ - 1} 1.

 \tt \mapsto {tan}^{ - 1}   \bigg( \dfrac{235}{226} \bigg) +  {tan}^{ - 1}   \bigg(\dfrac{1}{x}\bigg) = {tan}^{ - 1} 1.

 \tt \mapsto  {tan}^{ - 1}   \bigg(\dfrac{1}{x}\bigg) = {tan}^{ - 1} 1- {tan}^{ - 1}   \bigg( \dfrac{235}{226} \bigg)

 \tt \mapsto  {tan}^{ - 1}   \bigg(\dfrac{1}{x}\bigg) = {tan}^{ - 1}\bigg(\dfrac{1 -  \frac{235}{226} }{1 +  \frac{235}{226} }\bigg)

 \tt \mapsto  {tan}^{ - 1}   \bigg(\dfrac{1}{x}\bigg) = {tan}^{ - 1}\bigg(\dfrac{ - 9}{461}\bigg)

 \tt \mapsto   \bigg(\dfrac{1}{x}\bigg) = \bigg(\dfrac{ - 9}{461}\bigg)

 \tt \mapsto  x =   - \dfrac{461}{9}

Therefore, the value of x is - 461 / 9.

Similar questions