Math, asked by vibhavpol7604, 9 months ago


 \tan(a)  \div 1 -  \cot(a)  +  \cot(a) \div 1 -  \tan(a) = 1 +  \sec(a) \times  \csc(a)

Answers

Answered by kartikey07
0

Answer:

math]\dfrac{\tan A}{1-\cot A} + \dfrac{\cot A}{1-\tan A} = \dfrac{\frac{\sin A}{\cos A}}{1-\frac{\cos A}{\sin A}} + \dfrac{\frac{\cos A}{\sin A}}{1-\frac{\sin A}{\cos A}} [/math]

[math]= \dfrac{{\sin}^2 A}{\cos A(\sin A-\cos A)} + \dfrac{{\cos}^2 A}{\sin A(\cos A-\sin A)} [/math]

[math]= \dfrac{{\sin}^3 A-{\cos}^3 A}{\cos A \sin A(\sin A-\cos A)} [/math]

[math]= \dfrac{{\sin}^2 A+\cos A \sin A+{\cos}^2 A}{\cos A \sin A} [/math]

[math]= \dfrac{1+\cos A \sin A}{\cos A \sin A} [/math]

[math]= 1+\sec A \csc A. \blacksquare [/math]

Answered by dkpk7640
0

Answer:

soory dont know . I am not understanding the question

Similar questions