Math, asked by Anonymous, 1 year ago

\textbf{Solve it quickly }

Attachments:

Answers

Answered by Rememberful
4

\textbf{Answer is in Attachment !}

Attachments:

nimki87: will u plzz talk with ME for a minute
Rememberful: ??¿¿
nimki87: may I ha ve ur no.
nimki87: plzz don't deny
Rememberful: whats the hell wrong with brainly
Rememberful: and these users
Rememberful: leave me, else I will delete this id too
nimki87: acha acha gussa kyu hote ho
nimki87: boys ko ita gussa acha nhi
Rememberful: mjhe gussa nhi arha hai and dont comment and disturb others
Answered by Anonymous
9
Let P (0, -1), Q (2, 1) and R (0, 3).

And X the mid point of PQ

Y the mid point of QR

Z the mid point of PR.

On joining these mid points (X, Y & Z) we get a ∆XYZ

We have to find the ratio of ∆PQR and ∆XYZ


Area of triangle =

\dfrac{1}{2} |x_{1} \: (y_{2} - y _{3}) \: + \: x_{2} \: (y _{3} - y_{1}) \: x _{3} \: (y _{1} - y_{2})|


Ar of ∆PQR =

\dfrac{1}{2} |0 \: (1-3) \: + 2 \: (3+ 1) \: + 0 \: ( - 1- 1)|

= \dfrac{1}{2} |0 \: ( - 2) \: + 2 \: ( + 4) \: + 0 \: ( - 2)|

= \dfrac{1}{2} | + 8|

= \dfrac{1}{2} × 8

= \boxed{4\: sq.\: units}

Now...

\underline{Coordinates\: of\: X}

 \dfrac{x _{1} \: + \: x_{2} }{2}, \dfrac{x _{1} \: + \: x_{2} }{2}

=> \dfrac{0\:+\:2}{2}, \dfrac{-1\:+\:1}{2}

=> (1, 0)

\underline{Coordinates \:of\: Y}

=> \dfrac{0\:+\:0}{2}, \dfrac{-1\:+\:3}{2}

=> (0, 1)

\underline{Coordinates\: of\: Z}

=> \dfrac{2\:+\:0}{2}, \dfrac{1\:+\:3}{2}

=> (1, 2)

Ar of ∆XYZ =

\dfrac{1}{2} |1 \: (1 - 2) \: + 0 \: (2 - 2) \: + 1\: ( - 0 - 1)|

= \dfrac{1}{2} |-1\:0\:\:-1|

= \dfrac{1}{2} |-2|

= \dfrac{1}{2} (+2)

= \boxed{1 \:sq. \:units}

Ratio..

 \dfrac{ \triangle \: XYZ}{ \triangle \: PQR} = \dfrac{1}{4}

\textbf{1 : 4} (∆XYZ : ∆PQR)
Attachments:
Similar questions