A point P is 16 cm from the centre of the circle. The length of tangent drawn from P to the circle is 12 cm. Find the radius of the circle.
Answers
Answered by
0
Hey !
______________________________
ɢɪᴠᴇɴ : ᴘ ɪs ᴀ ᴘᴏɪɴᴛ ᴀᴛ ᴅɪsᴛᴀɴᴄᴇ ᴏғ 16ᴄᴍ ғʀᴏᴍ ᴛʜᴇ ᴄᴇɴᴛʀᴇ ᴏғ ᴀ ᴄɪʀᴄʟᴇ ᴏ. ᴛʜᴇ ʟᴇɴɢᴛʜ ᴏғ ᴛᴀɴɢᴇɴᴛ ᴅʀᴀᴡɴ ғʀᴏᴍ ᴘ ᴛᴏ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs 12 ᴄᴍ.
ɪᴛ ɪs ʀᴇǫᴜɪʀᴇᴅ ᴛᴏ ᴍᴇᴀsᴜʀᴇ ᴛʜᴇ ʀᴀᴅɪᴜs ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ.
ɴᴏᴡ, ∠ᴏᴛᴘ= 90°
( ∵ ᴀ ᴛᴀɴɢᴇɴᴛ ᴛᴏ ᴀ ᴄɪʀᴄʟᴇ ɪs ⊥ ᴛᴏ ᴛʜᴇ ʀᴀᴅɪᴜs ᴛʜʀᴏᴜɢʜ ᴛʜᴇ ᴘᴏɪɴᴛ ᴏғ ᴄᴏɴᴛᴀᴄᴛ).
∴ ɪɴ ʀɪɢʜᴛ ᴀɴɢʟᴇ ᴛʀɪᴀɴɢʟᴇ ᴏᴛᴘ,
ᴏᴘ² = ᴏᴛ²+ ᴛᴘ²
ᴏʀ, 16² = ᴏᴛ² + (12)²
ᴏʀ, 256-144 = ᴏᴛ²
ᴏʀ, 112 = ᴏᴛ²
∴ ᴏᴛ = 10.89 ᴄᴍ
ʜᴇɴᴄᴇ, ʀᴀᴅɪᴜs = 10.89 ᴄᴍ
______________________________
Thanks !
Answered by
1
PA is the ten gent to the circle at point A
PA = 90* [ radius is always perpendicular to the tengent ]
In trg PAO+trg PAO = 90* [ form ¡ eq]
po^2= (12)^2+ AO^2
therefore AO^2 = (16)^2-(12)^2
AO^2= 256 - 144
AO^2 = UNDERROOT 112
AO = 10.59 approx.
hence the radius of the circle is 10.59...
Similar questions