World Languages, asked by ANGELNIVI, 1 year ago

{\textbf{Subject : Mathematics}}

{\textbf{Chapter : Tangency}}


A point P is 16 cm from the centre of the circle. The length of tangent drawn from P to the circle is 12 cm. Find the radius of the circle.​

Answers

Answered by GhaintMunda45
5

Hey !

______________________________

ɢɪᴠᴇɴ : ᴘ ɪs ᴀ ᴘᴏɪɴᴛ ᴀᴛ ᴅɪsᴛᴀɴᴄᴇ ᴏғ 16ᴄᴍ ғʀᴏᴍ ᴛʜᴇ ᴄᴇɴᴛʀᴇ ᴏғ ᴀ ᴄɪʀᴄʟᴇ ᴏ. ᴛʜᴇ ʟᴇɴɢᴛʜ ᴏғ ᴛᴀɴɢᴇɴᴛ ᴅʀᴀᴡɴ ғʀᴏᴍ ᴘ ᴛᴏ ᴛʜᴇ ᴄɪʀᴄʟᴇ ɪs 12 ᴄᴍ.

ɪᴛ ɪs ʀᴇǫᴜɪʀᴇᴅ ᴛᴏ ᴍᴇᴀsᴜʀᴇ ᴛʜᴇ ʀᴀᴅɪᴜs ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ.

ɴᴏᴡ, ∠ᴏᴛᴘ= 90°

( ∵ ᴀ ᴛᴀɴɢᴇɴᴛ ᴛᴏ ᴀ ᴄɪʀᴄʟᴇ ɪs ⊥ ᴛᴏ ᴛʜᴇ ʀᴀᴅɪᴜs ᴛʜʀᴏᴜɢʜ ᴛʜᴇ ᴘᴏɪɴᴛ ᴏғ ᴄᴏɴᴛᴀᴄᴛ).

∴ ɪɴ ʀɪɢʜᴛ ᴀɴɢʟᴇ ᴛʀɪᴀɴɢʟᴇ ᴏᴛᴘ,

ᴏᴘ² = ᴏᴛ²+ ᴛᴘ²

ᴏʀ, 16² = ᴏᴛ² + (12)²

ᴏʀ, 256-144 = ᴏᴛ²

ᴏʀ, 112 = ᴏᴛ²

∴ ᴏᴛ = 10.89 ᴄᴍ

ʜᴇɴᴄᴇ, ʀᴀᴅɪᴜs = 10.89 ᴄᴍ

______________________________

Thanks !

Answered by Sanclynz5
1

Answer:-

Let the R be the radius and O be the centre of the circle on which PT is a tangent from point P

In Triangle OTP,

 {ot}^{2}  +  {pt}^{2}   = {op}^{2}  \\  {r}^{2}   +  {12}^{2}    =  {16}^{2}  \\  {r}^{2}  = 256  - 144 \\  {r}^{2}  = 112 \\ r \:  = 10.89cm

Similar questions