Math, asked by Anonymous, 1 month ago

\textsf{Mathematically prove that :-}

{^nC_0} + {^nC_1}+{^nC_2}+{^nC_3} +...+{^nC_n} = 2^n

Solve this without using induction.

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

We know,

The binomial expansion of

\rm :\longmapsto\: {(x + y)}^{n}, \: where \: n \: is \: a \: positive \: integer

is given as

\rm \:  =  \:^nC_0 {x}^{n - 0} {y}^{0} + \:  ^nC_1 {x}^{n - 1} {y}^{1} +  \: ^nC_2 {x}^{n - 2} {y}^{2} +  -  -  -  +  \: ^nC_n {x}^{0} {y}^{n}

\rm \:  =  \:^nC_0 {x}^{n} + \:  ^nC_1 {x}^{n - 1} {y}^{1} +  \: ^nC_2 {x}^{n - 2} {y}^{2} +  -  -  -  +  \: ^nC_n{y}^{n}

So, Put y = 1, in the above expansion, we get

\rm :\longmapsto\: {(x + 1)}^{n}

\rm \:  =  \:^nC_0 {x}^{n} + \:  ^nC_1 {x}^{n - 1} +  \: ^nC_2 {x}^{n - 2}  +  -  -  -  +  \: ^nC_n

Now, Put x = 1, in this expansion, we get

 \rm \:  {(1 + 1)}^{n} =  {^nC_0} {(1)}^{n}  + {^nC_1} {(1)}^{n - 1} +{^nC_2} {(1)}^{n - 2} +{^nC_3} {(1)}^{n - 3} +...+{^nC_n}

\rm :\longmapsto\: {2}^{n}  \:  =  \: {^nC_0} + {^nC_1}+{^nC_2}+{^nC_3} +...+{^nC_n}

Hence, Proved

Additional Information :-

\boxed{ \rm \:{^nC_0} + {^nC_2}+{^nC_4} +  -  -  = +{^nC_1}+{^nC_3} +  -  -  -  =  {2}^{n - 1}}

\boxed{ \rm \:^nC_x + \:  ^nC_{x + 1} = \:  ^{n + 1}C_x}

\boxed{ \rm \: \frac{^nC_x}{^nC_{x - 1}}  =  \frac{n - x + 1}{x}}

\boxed{ \rm \:^nC_x =  \frac{n}{x} \: ^{n - 1}C_{x - 1}}

Similar questions