Math, asked by Anonymous, 5 months ago

\to very\:important-what is a square.theorms for squares.draw a square of perimeter 36 and find its area

Answers

Answered by Anonymous
46

\mathfrak{dear\:user}

\textsf{question-what \:is \:a\: square\:and write\:about\:it}

\mathfrak{here\:is\:the\:solution}

\mathbb{ANSWER}

SQUARE

\textsc{a \:square\:is\:a\:quadrilateral\:with\:4\:sides}

\textsc{it is a  rectangle in which two adjacent sides have equal length}

\textsc{Number of vertices: 4}

\textsc{Number of edges}-4

\textsc{internal angle- 90}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large }\put(4.4,2){\bf\large \ }\end{picture}

\textsf{prove that diagonals of square are equal}

Given : \textsf{ square ABCD}

\textsf{diagonals AC and BD}

To Prove :AC=BD

Proof:\textsf{In triangles BAD and ABC}

\textsf{AB = AB (COMMON)}

\textsf{  AD = BC (ALL SIDES IN A SQUARE ARE EQUAL)}

\angle BAD=\angle ABC \textsf{(VERTEX ANGLES, SO EQUAL)}

\textsf{BY SAS,     }\triangle BAD\cong\triangle ABC

\textsf{       BY CPCT, AC = BD}

\textsf{                    HENCE PROVED}

\mathbb{TO\:FIND\:AREA}

{Area=side\times side}

\text{A-area,S-side}

A=S\times S

A=S^2

\boxed{A=S^2}\to1

\mathbb{TO\:FIND\:PERIMETER}

\textit{Perimeter=side+side+side+side}

\text{P-perimeter,S-sides}

\text{P=side+side+side+side}

\text{P=4S}

\boxed{\text{P=4S}}\to2

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large side}\put(4.4,2){\bf\large side}\end{picture}

\textsf{given perimeter=36}

\textsf{from \boxed{\to2} perimeter =4s}

36=4S\\4S=36\\S=36\div4\\S=9

\boxed{S=9}\to3

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large 9\ cm}\put(4.4,2){\bf\large 9\ cm}\end{picture}

\textsf{from\boxed{\to\:1} area=s x s}

\textsf{from\boxed{\to  3}substitute the value of s=9 }

A=S^2

A=9^2

A=9\times9

A=81

\boxed{A=81}

\boxed{\therefore\textsf{area}=81 cm^{2}}

\mathbf{EXTRA \:INFORMATION}

\textsf{1) proporties of squares}

\to\textsc{The diagonals of a square bisect each other and meet at 90 }

\to\textsc{The diagonals of a square bisect its angles.}

\to\textsc{Opposite sides of a square are both parallel and equal in length.}

\to\textsc{All four sides of a square are equal.}

\to\textsc{The diagonals of a square are equal.}

\textsf{2) angles of a square add up to?}

Proof: \textsf{In the square ABCD,}

\angle ABC, \angle BCD, \angle CDA, and \angle DAB\: \textsf{are the internal angles.}

\textsf{AC is a diagonal}

\textsf{AC divides the quadrilateral into two triangles, }\triangle ABC\: and\: \triangle ADC

\textsf{We have learned that the sum of internal angles of a quadrilateral is }\textsf{360, that is,}  ABC + \angle BCD + \angle CDA +\angle DAB = 360.

\textsf{let's prove that the sum of all the four angles of a quadrilateral is 360 degrees.}

\textsf{We know that the sum of angles in a triangle is 180.}

\textsf{Now consider} \:\triangle ADC,

\angle D + \angle DAC + \angle DCA = 180                     \text{     (Sum of angles in a triangle)}

\textsf{Now consider triangle ABC,}

\angle B + \angle BAC + \angle BCA = 180

\textsf{On adding both the equations obtained above we have,}

(∠D + ∠DAC + ∠DCA) + (∠B + ∠BAC + ∠BCA) = 180° + 180°

∠D + (∠DAC + ∠BAC) + (∠BCA + ∠DCA) + ∠B = 360°

\textsf{We see that} (\angle DAC +\angle  BAC) = \angle  DAB\: and\: (\angle  BCA + \angle  DCA) = \angle  BCD.

\textsf{Replacing them we have,}

∠D + ∠DAB + ∠BCD + ∠B = 360°

\text{That is,}

\angle D + \angle A + \angle C +\angle B=360

\textsf{Or, the sum of angles of a quadrilateral is 360. This is the angle sum property of quadrilaterals.}

\to PLEASE\:DONT\:COPY

\mathcal{HOPE\:IT\:HELPS}

\mathcal{BY\:BRAINLY \:ROSHAN}

Attachments:
Answered by Theopekaaleader
3

EXTRAINFORMATION

\textbf{How to draw a rectangle?}How to draw a rectangle?

\textsf{For example take the values of B=9cm , L=10cm}For example take the values of B=9cm , L=10cm

\bullet \textsf{draw a horizonal line AB of 10cm(length)}∙draw a horizonal line AB of 10cm(length)

\bullet\textsf{draw a right angle from the point A and draw a line AD of 9cm (breadth)}∙draw a right angle from the point A and draw a line AD of 9cm (breadth)

\bullet\textsf{From D draw a right angle and draw a line DC of 10cm(length)}∙From D draw a right angle and draw a line DC of 10cm(length)

\bullet\textsf{From C draw a right angle and draw a line CB of 9cm(breadth)}∙From C draw a right angle and draw a line CB of 9cm(breadth)

\bullet \textsf{refer to images for understanding more}∙refer to images for understanding more

\textbf{Properties of rectangle}Properties of rectangle

\textsf{The opposite sides are parallel and equal to each other}The opposite sides are parallel and equal to each other

\textsf{Each interior angle is equal to 90 degrees}Each interior angle is equal to 90 degrees

\textsf{The sum of all the interior angles is equal to 360 degrees}The sum of all the interior angles is equal to 360 degrees

\textsf{The diagonals bisect each other}The diagonals bisect each other

\textsf{Both the diagonals have the same length}Both the diagonals have the same length

\textsf{A diagonal of a rectangle is a diameter of its circumcircle}A diagonal of a rectangle is a diameter of itsEXTRAINFORMATION

\textbf{How to draw a rectangle?}How to draw a rectangle?

\textsf{For example take the values of B=9cm , L=10cm}For example take the values of B=9cm , L=10cm

\bullet \textsf{draw a horizonal line AB of 10cm(length)}∙draw a horizonal line AB of 10cm(length)

\bullet\textsf{draw a right angle from the point A and draw a line AD of 9cm (breadth)}∙draw a right angle from the point A and draw a line AD of 9cm (breadth)

\bullet\textsf{From D draw a right angle and draw a line DC of 10cm(length)}∙From D draw a right angle and draw a line DC of 10cm(length)

\bullet\textsf{From C draw a right angle and draw a line CB of 9cm(breadth)}∙From C draw a right angle and draw a line CB of 9cm(breadth)

\bullet \textsf{refer to images for understanding more}∙refer to images for understanding more

Similar questions