French, asked by ΙΙïƚȥΑαɾყαɳΙΙ, 12 hours ago

\tt{Question}

Attachments:

Answers

Answered by OoAryanKingoO78
9

Answer:

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given :  \\  \\  \odot \:  \displaystyle \int_ {0}^{3} \rm \:f(x) \: dx = 6 \:  \:  \:  -  -  - (1) \\  \\  \odot \: \displaystyle \int_ {3}^{5} \rm \:f(x) \: dx = 4 \:  \:  \:  -  -  - (2) \\  \\  \blue{ \underline{ \sf \: we \: have \: to \: find : \:  }}  \\  \\ \displaystyle \int_ {0}^{5} \rm \:(3 + 2 \: f(x)) \: dx = \:  ?\end{array}}}}

{\boxed{\boxed{\begin{array}{cc} \red{ \underline{\bf \: solution}} \\  \\ \displaystyle \int_ {0}^{5} \rm \:(3 + 2 \: f(x)) \: dx \\  \\   = \displaystyle \int_ {0}^{5} \rm \:3 \: dx + \displaystyle \int_ {0}^{5} \rm \:2 \: f(x) \: dx \\  \\  = { \huge{[}}3x{ \huge{]}}_0^5 + 2\displaystyle \int_ {0}^{5} \rm \:f(x) \: dx \\  \\ \orange{{\boxed{\begin{array}{cc}\bf \: \to \:we \: know :  \\  \\ \displaystyle \int_ {a}^{c} \rm \:f(x) \: dx = \displaystyle \int_ {a}^{b} \rm \:f(x) \: dx + \displaystyle \int_ {b}^{c} \rm \:f(x) \: dx\end{array}}}} \\  \\  = (3 \times 5 - 3 \times 0) + 2   \left(\displaystyle \int_ {0}^{3} \rm \:f(x) \: dx + \displaystyle \int_ {3}^{5} \rm \:f(x) \: dx \right) \\  \\  = 15 + 2(6 + 4) \\  \\  \orange{ \boxed{ \bf \: by \: eqn.(1) \:  \: and \: (2) }} \\  \\  = 15 + 2 \times 10 \\  \\  = 15 + 20 \\  \\  = 35\end{array}}}}

 \orange{ \boxed{ \therefore \displaystyle \int_ {0}^{5} \rm \:(3 + 2 \: f(x)) \: dx = 35}}

{\blue{\rule{25pt}{1pt}{\pink{\rule{30pt}{3pt}{\red{\rule{100pt}{5pt}{\blue{\rule{25pt}{1pt}{\pink{\rule{30pt}{3pt}  }}}}}}}}}}

Answered by xxitssagerxx
5

\huge\sf\fbox\purple{ ★ Solution ★}

°°° Explanation °°°

To find zero of the polynomial, p(x)=0

(i) If p(x)=x+5=0 then x=−5, i.e. −5 is the zero.

(ii) If p(x)=x−5=0 then x=5, i.e. 5 is the zero.

(iii) If p(x)=2x+5=0 then x= 2

−5 , i.e. 2−5 is the zero.

(iv) If p(x)=3x−2=0 then x= 32

, i.e. 32 is the zero.

(v) If p(x)=3x=0 then x=0, i.e. 0 is the zero.

(vi) If p(x)=ax=0 then x=0, i.e. 0 is the zero.

(vii) If p(x)=cx+d=0 then x= c−d

, i.e. c −d

is the zero.

Similar questions