Math, asked by physicsloverhere, 1 month ago

   \tt:  \red{  {25}^{n - 1}   + 100 =  {5}^{2n - 1}} Find value of n

✊Don't spam! ​

Answers

Answered by bhumiraj1234
6

Step-by-step explanation:

25^n-1 + 100 = 5^2n-1

25^n.25^-1 + 100= 5^2n.5^-1

25^n.25^-1 + 100= 25^n.5^-1

Now take 25^n.25^-1 part to RHS then will get

25^n.5^-1 - (25^n.25^-1 )=100

Now take 25^n common from LHS

25^n(1/5 - 1/25)= 100

25^n(4/25)=100

25^n=100*25/4

25^n=25*25

25^n=25^2

Now we can say that

n=2.

Answered by Anonymous
95

Given :-

  •  \sf {25}^{n - 1}   + 100 =  {5}^{2n - 1}

To Find :-

  •  \sf n = ?

Solution :-

 \qquad\leadsto\quad\sf \pink{  {25}^{n - 1}  + 100 =  {5}^{2n - 1}} \\

 \qquad\leadsto\quad\sf100 =  {5}^{2n - 1}   -  {25}^{n - 1}  \\

 \qquad\leadsto\quad\sf  {5}^{2n - 1}  -  {25}^{n - 1}  =  100\\

 \qquad\leadsto\quad\sf {5}^{2n}  \times  {5}^{ - 1}  -  {25}^{n}  \times  {25}^{ - 1}  = 100 \\

 \qquad\leadsto\quad\sf({5}^{2} ) ^{n}  \times  \frac{1}{5}   -  {25}^{n}  \times   \frac{1}{25}   = 100\\

 \qquad\leadsto\quad\sf \dfrac{ {25}^{n} }{5}  -  \frac{ {25}^{n} }{25}  = 100 \\

 \qquad\leadsto\quad\sf \dfrac{5 \times {25}^{n}  -  {25}^{n} }{25}  = 100\\

 \qquad\leadsto\quad\sf  {25}^{n} (5 - 1) = 100 \times 25 \\

 \qquad\leadsto\quad\sf {25}^{n}  \times 4 =2500 \\

 \qquad\leadsto\quad\sf {25}^{n}  =  \frac{2500}{4}  \\

 \qquad\leadsto\quad\sf{25}^{n}  = 625 \\

 \qquad\leadsto\quad\sf{25}^{n}  =  {25}^{2} \\

 \qquad\leadsto\quad\sf \pink{n = 2}\\\\

\therefore\:\underline{\textsf{Value of n is  \textbf{2}}}.\\\\

Similar questions