explain required
Answers
GIVEN
TO FIND:-
- required solutions
EXPLAIN:-
•°• verified
Answer:
GIVEN
verify x = \frac{3}{4} \: \: y = \frac{5}{6} \: \: z = \frac{ - 7}{8}verifyx=43y=65z=8−7
TO FIND:-
required solutions
EXPLAIN:-
\begin{gathered}x = (y + z) = (x + y) + z \\ \\ x = (y + z) = \frac{3}{4} + ( \frac{5}{6} + \frac{ - 7}{8} ) \\ \\ = \frac{3}{4} + ( \frac{20 + ( - 21)}{24} ) \\ \\ = \frac{3}{4} + ( \frac{ - 1}{24} ) \\ \\ = \frac{3}{4} + \frac{ - 1}{24} \\ \\ = \frac{18 + ( - 1)}{24} \\ \\ = \frac{17}{24} \\ \\ (x + y ) + z = ( \frac{3}{4} + \frac{5}{6} ) + \frac{ - 7}{8} \\ \\ = ( \frac{9 + 10}{12} ) + \frac{ - 7}{8} \\ \\ = \frac{19}{12} + \frac{ - 7}{8} \\ \\ = \frac{38 + ( - 21)}{24} \\ \\ = \frac{38 - 21}{24} \\ \\ = \frac{17}{24} \\ \\ x + (y + z) = (x + y) + z \\ \\\end{gathered}x=(y+z)=(x+y)+zx=(y+z)=43+(65+8−7)=43+(2420+(−21))=43+(24−1)=43+24−1=2418+(−1)=2417(x+y)+z=(43+65)+8−7=(129+10)+8−7=1219+8−7=2438+(−21)=2438−21=2417x+(y+z)=(x+y)+z
•°• verified