Math, asked by Anonymous, 7 days ago


verify x = \frac{3}{4} \: \: y = \frac{5}{6} \: \: z = \frac{ - 7}{8}
explain required ​

Answers

Answered by spyXsenorita
5

GIVEN

verify x = \frac{3}{4} \: \: y = \frac{5}{6} \: \: z = \frac{ - 7}{8}

TO FIND:-

  • required solutions

EXPLAIN:-

  • x = (y + z) = (x + y) + z \\   \\  x = (y + z) =  \frac{3}{4}  +   ( \frac{5}{6}  +   \frac{ - 7}{8} ) \\   \\  = \frac{3}{4}  + ( \frac{20 + ( - 21)}{24} ) \\   \\   =  \frac{3}{4}  + ( \frac{ - 1}{24} ) \\  \\   =  \frac{3}{4}  +   \frac{ - 1}{24}  \\  \\ =   \frac{18 + ( - 1)}{24}  \\  \\  =  \frac{17}{24}  \\  \\ (x + y ) + z = ( \frac{3}{4}  +  \frac{5}{6} ) +  \frac{ - 7}{8}  \\  \\  = ( \frac{9 + 10}{12} ) +  \frac{ - 7}{8}  \\  \\  =  \frac{19}{12}  +  \frac{ - 7}{8}  \\  \\  =  \frac{38 + ( - 21)}{24}  \\  \\  =  \frac{38 - 21}{24}  \\  \\  =  \frac{17}{24}  \\  \\ x + (y + z) = (x + y) + z \\  \\

•°• verified

Answered by xXmonaXx99
1

Answer:

GIVEN

verify x = \frac{3}{4} \: \: y = \frac{5}{6} \: \: z = \frac{ - 7}{8}verifyx=43y=65z=8−7

TO FIND:-

required solutions

EXPLAIN:-

\begin{gathered}x = (y + z) = (x + y) + z \\ \\ x = (y + z) = \frac{3}{4} + ( \frac{5}{6} + \frac{ - 7}{8} ) \\ \\ = \frac{3}{4} + ( \frac{20 + ( - 21)}{24} ) \\ \\ = \frac{3}{4} + ( \frac{ - 1}{24} ) \\ \\ = \frac{3}{4} + \frac{ - 1}{24} \\ \\ = \frac{18 + ( - 1)}{24} \\ \\ = \frac{17}{24} \\ \\ (x + y ) + z = ( \frac{3}{4} + \frac{5}{6} ) + \frac{ - 7}{8} \\ \\ = ( \frac{9 + 10}{12} ) + \frac{ - 7}{8} \\ \\ = \frac{19}{12} + \frac{ - 7}{8} \\ \\ = \frac{38 + ( - 21)}{24} \\ \\ = \frac{38 - 21}{24} \\ \\ = \frac{17}{24} \\ \\ x + (y + z) = (x + y) + z \\ \\\end{gathered}x=(y+z)=(x+y)+zx=(y+z)=43+(65+8−7)=43+(2420+(−21))=43+(24−1)=43+24−1=2418+(−1)=2417(x+y)+z=(43+65)+8−7=(129+10)+8−7=1219+8−7=2438+(−21)=2438−21=2417x+(y+z)=(x+y)+z

•°• verified

Similar questions