Math, asked by psaty8990, 10 months ago


(x - 2) { }^{2}  + 1 = 2x - 3 \\  solve \: in \: quadrtic \: equation

Answers

Answered by MRsteveAustiN
3

Answer:

  {x}^{2}  + 4 - 4x + 1 = 2x - 3 \\  {x}^{2}  - 4x - 2x =  - 3 - 4 - 1 \\  {x}^{2}  - 6x  + 8=0

Answered by Anonymous
0

Answer:

\huge\mathcal\purple{Solution:-}

{(x -2)}^{2} + 1 = 2x - 3 \\ \\ {x}^{2} + 4 - 4x + 1 = 2x - 3 \\ \\ {x}^{2} + 5 - 4x = 2x - 3 \\ \\ {x}^{2} + 5 + 3 = 2x + 4x \\ \\ {x}^{2} + 8 = 6x \\ \\Then \\\\  {x}^{2} - 6x + 8 = 0 \\ \\ {x}^{2} - 2x - 4x + 8x = 0 \\ \\ ({x}^{2} - 2x ) - (4x - 8x) = 0 \\ \\ x ( x - 2) - 4 ( x - 2 ) =0 \\ \\ (x - 2) (x - 4) = 0 \\ \\ x - 2 = 0 \: or \: x - 4 = 0 \\ \\ x = 2 \: or \: x = 4

Similar questions