Math, asked by lathikapadu, 1 year ago


x = 2   \sqrt{3} then \: find \: x { }  ^{2}  + 1  \div x {?}^{2}

Answers

Answered by Darsh05
1

Answer: \frac{145}{12}

Step-by-step explanation:

x^{2} +\frac{1}{x^{2} }

(2\sqrt{3}) ^{2} +\frac{1}{(2\sqrt{3}) ^{2}}

4*3+\frac{1}{4*3}

12+\frac{1}{12}

\frac{144+1}{12}

\frac{145}{12}

x^{2} +\frac{1}{x^{2} } = \frac{145}{12}

Please mark brainliest...

Answered by rakeshmohata
1

Answer:

=> 145/12

Step-by-step explanation:

 =  > \bf x = 2 \sqrt{3}  \\  \\  =  >  \bf \frac{1}{x}  =  \frac{1}{2 \sqrt{3} }  =  \frac{ \sqrt{3} }{2 \sqrt{3}  \times  \sqrt{3} }  =  \frac{ \sqrt{3} }{6}  \\  \\  =  >  \bf \: (x +  \frac{1}{x} ) = 2 \sqrt{3}  +  { \frac{ \sqrt{3} }{6} }  \\  \\  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{12 \sqrt{3} +  \sqrt{3}  }{6}  =  \frac{13 \sqrt{3} }{6}  \\  \\  \underline{ \bf \:  \: formula  \: \: to  \: \: be  \:  \:  used} \\  \\  =  >  \bf \:  {x}^{2}  +  {y}^{2}  =  \it \: (x + y) {}^{2}  - 2xy \\  \\  \bf \: thus \:  \:  \: similarly... \\  \\  \bf  =  >  \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = (x +  \frac{1}{x} ) {}^{2}  - 2 \times x  \times \frac{1}{x}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \bf =  ( \frac{13 \sqrt{3} }{6} ) {}^{2}  - 2 =  \frac{13}{6}  \times  \frac{13}{6}  \times 3 - 2 \\  \\  \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{169}{12}  - 2 =  \frac{169 - 24}{12}  =  \frac{145}{12}  = 12  \frac{1}{12}

Similar questions