![x^2 + x - 56 x^2 + x - 56](https://tex.z-dn.net/?f=x%5E2++%2B+x+-+56)
factorisation trinomial
Answers
Answered by
1
Answer:
x^2+x-56=0
-56x^2=8x×(-7x)
so
x^2+8x-7x-56=0
X(X+8)-7(X+8)=0
therefore X=-8,7
please mark it as a brainliest answer
Answered by
1
Solve
x
2
−
x
−
56
=
0
using the formula
x
0
=
−
b
±
√
b
2
−
4
a
c
2
a
to get solutions
x
0
=
a
and
x
0
=
b
(in this particular case
x
0
=
8
and
x
0
=
−
7
)
Since the original quadratic is equal to zero when
x
is equal to either of the
x
0
values
(
x
−
a
)
and
(
x
−
b
)
are factors of the original quadratic.
Using
a
=
8
and
b
=
−
7
(
x
−
8
)
(
x
+
7
)
=
x
2
−
x
−
56
and the factorization is complete.
Similar questions