Find roots
Answers
Answered by
4
(x^2+x)(x^2+x-2) = 24
let we suppose
if (x^2 + x ) = A
then
(A)(A-2) = 24
A^2-2A-24 = 0
A^2 - 6A + 4A - 24 = 0
(A-6)(A+4) = 0
A = 6,-4
(x^2 + x ) = 6 ---------> EQ.(1)
(x^2 + x ) = -4 ---------> EQ.(2)
from EQ.(1)
x^2+x-6 = 0
(x+3)(x-2)= 0
x = -3,2
from EQ.(2)
x^2+x+4 = 0
x = (-1+- √1-16) / 2
= (-1+- i√15) / 2
x = (-1+i√15) / 2 , (-1-i√15) / 2
let we suppose
if (x^2 + x ) = A
then
(A)(A-2) = 24
A^2-2A-24 = 0
A^2 - 6A + 4A - 24 = 0
(A-6)(A+4) = 0
A = 6,-4
(x^2 + x ) = 6 ---------> EQ.(1)
(x^2 + x ) = -4 ---------> EQ.(2)
from EQ.(1)
x^2+x-6 = 0
(x+3)(x-2)= 0
x = -3,2
from EQ.(2)
x^2+x+4 = 0
x = (-1+- √1-16) / 2
= (-1+- i√15) / 2
x = (-1+i√15) / 2 , (-1-i√15) / 2
salonim1:
what are the final roots?
Similar questions