Math, asked by Anupsaha273, 9 months ago


x = 2a \sec( \alpha ) y = 2b \tan( \alpha ) then \:  {x}^{2}  \div  {a}^{2}  -  {y}^{2}  \div  {b}^{2}  =

Answers

Answered by Sharad001
29

Question :-

 \sf \: x = 2a \sec( \alpha ) , \: y = 2b \tan( \alpha ), then  \: find   \\   \sf\frac{ {x}^{2} }{ {a}^{2} }  -   \frac{ {y}^{2} }{ {b}^{2} }   =

Answer :-

\to \boxed{ \sf \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 4} \:

Solution :-

We have ,

 \mapsto \sf \: x = 2a \sec (\alpha)  \:  ....... eq.(1)\\  \\ \mapsto \sf y = 2b \tan( \alpha ) \: .......eq.(2) \\

Method (1)

Firstly squaring on both sides in both eq.

  \to \: \sf {x}^{2}  =  { \{ 2a \sec (\alpha)   \: \}}^{2}  \\  \\ \to \sf  {x}^{2}  =4 {a}^{2} \:  { \sec}^{2}( \alpha)   \:  \: ....eq.(3)   \\ \bf and \\  \\  \to \sf {y}^{2}  =  { \{ 2b \tan (\alpha)  \} }^{2}  \:   \\  \\  \to \sf \:   {y}^{2}  = 4 {b}^{2}  { \tan}^{2}(  \alpha) \:  \: .....eq.(4)

Now,to eq.(3) divided by a² ,and to eq.(4) divided by b² after that subtract them

 \to \sf \frac{ {x}^{2} }{ {a}^{2} } -  \frac{ {y}^{2} }{ {b}^{2} }   =  \frac{4 {a}^{2} { \sec}^{2}( \alpha)  }{ {a}^{2} }  -  \frac{4 {b}^{2}  { \tan}^{2}( \alpha) }{ {b}^{2} }  \\  \\  \to \sf \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 4 \{ { \sec}^{2} ( \alpha) -  { \tan}^{2} ( \alpha) \} \\  \\  \because \:  { \sec}^{2}  \theta -  { \tan}^{2}  \theta = 1 \\  \\  \to \boxed{ \sf \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 4}

Method (2)

We have ,

\mapsto \sf \: x = 2a \sec (\alpha)  \:  \\  \\ \mapsto \sf y = 2b \tan( \alpha ) \:  \\ \:  \\  \sf \: hence \:  \\  \\  \to \sf \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  \\  \\  \to \sf \frac{ \{ {2a \sec (\alpha)   \}}^{2} }{ {a}^{2} }  -  \frac{ { \{2b \tan( \alpha ) \}}^{2} }{ {b}^{2} }  \\  \\  \to \sf \frac{4 {a}^{2} { \sec}^{2} ( \alpha) }{ {a}^{2} }  -  \frac{4 {b}^{2} { \tan}^{2}( \alpha)  }{ {b}^{2} }  \\  \\  \to \: 4 \big \{ { \sec}^{2}  \alpha -  { \tan}^{2}   \alpha \big \} \\  \\  \to \: 4

Similar questions