Math, asked by manu9175, 27 days ago


x-\frac{1}{x}=8 \: then \: find \: (x^{2}+\frac{1}{x^{2}}) \: and \: (x^{4}+\frac{1}{x^{4}})
pls solve
urgent​

Answers

Answered by TYKE
1

Question :

 \sf \small \: x-\frac{1}{x}=8 \: then \: find \: (x^{2}+\frac{1}{x^{2}}) \: and \: (x^{4}+\frac{1}{x^{4}})

To find :

 \sf \small \: (x^{2}+\frac{1}{x^{2}}) \: and \: (x^{4}+\frac{1}{x^{4}})

Solution :

 \sf \small \: i) \: ( {x}^{2}  +  \frac{1}{ {x}^{2} } )

 \sf \small \rightarrow(x -  \frac{1}{x} )^{2}  =   {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2

 \sf \small \rightarrow {(8)}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2

 \sf \small \rightarrow {x}^{2} +  \frac{1}{ {x}^{2} } =   64 + 2

 \boxed{  \sf \small \rightarrow {x}^{2}  +  \frac{1}{ {x}^{2} }  = 66}

So now we know the value of x² + 1/x² i.e. 66

 \sf \small  \: ii) ( {x}^{4}  +  \frac{1}{ {x}^{4} } )

  \sf \small \rightarrow( {x}^{2}   +  \frac{1}{ {x}^{2} } ) ^{2}  =  {(66)}^{2}

  \sf \small \rightarrow  {x}^{4}  +  \frac{1}{ {x}^{4} } - 2 =  {(66)}^{2}

 \sf \small \rightarrow {x}^{4}  +  \frac{1}{ {x}^{4} }  = 4356 + 2

 \boxed{  \sf \small \rightarrow {x}^{4}  +  \frac{1}{ {x}^{4} }  = 4358 }

Final Answer :

  • The we got the value of x² + 1/x² is 66

  • The value of x⁴ + 1/x⁴ is 4358
Similar questions