Math, asked by IIIQuestionerIII, 5 months ago


x =  \frac{ \sqrt{6} +  \sqrt{7}  }{ \sqrt{7}  -  \sqrt{6} }  \: then \: find \:  {(x +  \frac{1}{x} )}^{2}  =

please help​

Answers

Answered by Qᴜɪɴɴ
13

Given:

  • x =  \dfrac{ \sqrt{6}  +  \sqrt{4} }{ \sqrt{6}  +  \sqrt{7} }

Then, we can get the value of 1/x by finding value of the reciprocal of given value of x

 \dfrac{1}{ x }  =  \dfrac{1}{ \dfrac{ \sqrt{6} +  \sqrt{7}  }{ \sqrt{7}  -  \sqrt{6} } }

 \purple{\bold{\boxed{\implies \:  \dfrac{1}{x}  =  \dfrac{ \sqrt{7} -  \sqrt{6}  }{ \sqrt{6}  +  \sqrt{7} }}}}

━━━━━━━━━━━━━━━━

Need to find:

 {(x +  \dfrac{1}{x} )}^{2}  =?

Substituting the values of x and  \dfrac{1}{x  } in the given equation we get,

 = ( { \dfrac{ \sqrt{6} +  \sqrt{7}  }{ \sqrt{7}  -  \sqrt{6} } +  \dfrac{ \sqrt{7} -  \sqrt{6}  }{ \sqrt{6} +  \sqrt{7}  }  )}^{2}

 = {( \dfrac{( \sqrt{6} +  \sqrt{7}  )( \sqrt{7 +  \sqrt{6}) } }{ (\sqrt{7}  -  \sqrt{6} )( \sqrt{7} +  \sqrt{6}  )}  +  \dfrac{( \sqrt{7}  -  \sqrt{6})( \sqrt{7} -  \sqrt{6})   }{( \sqrt{6}  +  \sqrt{7} )( \sqrt{7}  -  \sqrt{6} )}]}^{2}

 =   {( \dfrac{ {( \sqrt{7}  +  \sqrt{6} )}^{2} }{  { \sqrt{7} }^{2}  -  { \sqrt{6} }^{2}  }  +  \dfrac{ {( \sqrt{7}  -  \sqrt{6} )}^{2} }{ { \sqrt{7} }^{2}  -  { \sqrt{6} }^{2} } )}^{2}

 ={( 7 + 6 + 2 \sqrt{42}  + 7 + 6 - 2 \sqrt{42}) }^ {2}

 =  {(14 + 12)}^{2}

 ={ 26}^{2}

\red{\large{\bold{ = 676}}}

Answered by anshu24497
2

 \large \sf{ \green{Solution :  -}}

 \sf{ \blue{Substituting  \: the  \: values  \: of  \: x  \: and  \: \dfrac{1}{x }}} \\ \sf{ \blue{in \:  the \:  given  \: equation \:  we \:  get,}}

 = ( { \dfrac{ \sqrt{6} + \sqrt{7} }{ \sqrt{7} - \sqrt{6} } + \dfrac{ \sqrt{7} - \sqrt{6} }{ \sqrt{6} + \sqrt{7} } )}^{2} \\  \\ = {( \dfrac{( \sqrt{6} + \sqrt{7} )( \sqrt{7 + \sqrt{6}) } }{ (\sqrt{7} - \sqrt{6} )( \sqrt{7} + \sqrt{6} )} + \dfrac{( \sqrt{7} - \sqrt{6})( \sqrt{7} - \sqrt{6}) }{( \sqrt{6} + \sqrt{7} )( \sqrt{7} - \sqrt{6} )}]} \\  \\ = {( \dfrac{ {( \sqrt{7} + \sqrt{6} )}^{2} }{ { \sqrt{7} }^{2} - { \sqrt{6} }^{2} }  + \dfrac{ {( \sqrt{7} - \sqrt{6} )}^{2} }{ { \sqrt{7} }^{2} - { \sqrt{6} }^{2} } )}^{2} \\  \\ ={( 7 + 6 + 2 \sqrt{42} + 7 + 6 - 2 \sqrt{42}) }^ {2} \\  \\ = {(14 + 12)}^{2}  \\  \\ ={ 26}^{2} \\  \\ \red{\large{\bold{ \underline{ = 676}}}}

Similar questions