Math, asked by sahoosarojini978, 21 days ago


x =  \sqrt[3]{2 +  \sqrt{3} }
then the value of
x^3+1/x^3 =​

Answers

Answered by senboni123456
5

Answer:

Step-by-step explanation:

We have,

x=\sqrt[3]{2+\sqrt{3}}

\implies\,{x}^{3}=2+\sqrt{3}\,\,\,\,\,\,\,\,\,\,\,...(1)

\implies\,\dfrac{1}{{x}^{3}}=\dfrac{1}{2+\sqrt{3}}

\implies\,\dfrac{1}{{x}^{3}}=\dfrac{\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}

\implies\,\dfrac{1}{{x}^{3}}=\dfrac{2-\sqrt{3}}{\left(2\right)^2-\left(\sqrt{3}\right)^2}

\implies\,\dfrac{1}{{x}^{3}}=\dfrac{2-\sqrt{3}}{4-3}

\implies\,\dfrac{1}{{x}^{3}}=\dfrac{2-\sqrt{3}}{1}

\implies\,\dfrac{1}{{x}^{3}}=2-\sqrt{3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,...(2)

Adding (1) and (2),

\implies\,{x}^{3}+\dfrac{1}{{x}^{3}}=2+\sqrt{3}+2-\sqrt{3}

\implies\,{x}^{3}+\dfrac{1}{{x}^{3}}=2+2

\implies\,{x}^{3}+\dfrac{1}{{x}^{3}}=4

Similar questions