Math, asked by akhilmeera9776, 11 months ago


x + y =  - 1 \\ 3x - 2y = 22

Answers

Answered by sanketj
1

x + y = -1

y = - 1 - x

y = - (1 + x)

- y = 1 + x ... (i)

3x - 2y = 22

3x + 2(-y) = 22

3x + 2(1 + x) = 22

3x + 2 + 2x = 22

5x + 2 = 22

5x = 20

x = 4

substituting in (i)

- y = 1 + x = 1 + 4 = 5

- y = 5

y = -5

Hence, (x, y) = (4, -5) is the solution of the given pair of linear equations.

Answered by TRISHNADEVI
4

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

\underline{\mathfrak{\: Given , \: }} \\ \\ \:  \:  \:  \:  \:  \tt{x + y =  - 1 \:  \:  -  -  -  -  -  -  > (1)} \\  \\  \:  \:   \tt{3x - 2 y =  22\:  \:  -  -  -  -  -  -  > (2)}

 \sf{(1)  \implies \: y =  - 1 - x \:  \:  -  -  -  -  -  -  > (3)}

 \underline{ \text{ \:  \: Putting the value of   \: \red{y} \:  from eq. (3) in eq. (2), we get,  \:  \: }}

 \tt{(2)  \implies \: 3x - 2y = 22}\\  \\   \:  \:  \:  \:  \:  \:   \:  \tt{\implies \: 3x - 2 \red{( - 1 - x)} = 22} \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{  \implies \:3x  + 2 + 2x = 22 } \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{  \implies \: 5x + 2 = 22} \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{  \implies \: 5x = 22 - 2} \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{  \implies \: 5x = 20} \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{  \implies \: x =  \frac{20}{5} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{  \therefore \:  \: \red{ x = 4}}

 \underline{ \text{ \:  \: Putting the value of   \: \red{x} \:  in eq. (3), we get,  \:  \: }}

 \sf{ (3) \implies \: y =  - 1 - x} \\  \\  \:  \:  \:  \:  \:  \:  \: \sf{ \implies  \: y = - 1 -  \red{4}} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\sf{ \therefore \:  \red{y =  - 5}}

 \huge{ \bold{ \therefore \:  \underline{ \red{x = 4} }\:  \:  \:   and \:  \:  \:   \underline{\red{  y = - 5 }}}}

Similar questions