Science, asked by brainlyboy11140, 8 months ago

x+y+z=25,\:5x+3y+2z=0,\:y-z=6

solve it !!!!!!

Easy Difficult Question

Answers

Answered by Anonymous
1

Question :

☯ Solve   \bf{x+y+z=25,\:5x+3y+2z=0,\:y-z=6}

━━━━━━━━━━━━━

✭ To Find :  

Value of x, y and z

━━━━━━━━━━━━━

☞ Your Answer is  :

\bf{x=-\dfrac{131}{5},\:z=\dfrac{113}{5},\:y=\dfrac{143}{5}}

━━━━━━━━━━━━━

Given :

\sf{x+y+z=25,\:5x+3y+2z=0,\:y-z=6}

━━━━━━━━━━━━━

Solution :

Given conditions :

{\begin{bmatrix}x+y+z=25\\ 5x+3y+2z=0\\ y-z=6\end{bmatrix}

---------------------------------------------------

\mathrm{Isolate}\:y\:\mathrm{for}\:y-z=6

y-z=6

\mathrm{Add\:}z\mathrm{\:to\:both\:sides}

y-z+z=6+z

\mathrm{Simplify}

y=6+z

\mathrm{Subsititute\:}y=6+z

\begin{bmatrix}x+6+z+z=25\\ 5x+3\left(6+z\right)+2z=0\end{bmatrix}

---------------------------------------------------

\mathrm{Simplify}

x+6+z+z=25\quad :\quad x+6+2z=25

5x+3\left(6+z\right)+2z=0\quad :\quad 5x+18+5z=0

= \begin{bmatrix}x+6+2z=25\\ 5x+18+5z=0\end{bmatrix}

---------------------------------------------------

\mathrm{Isolate}\:x\:\mathrm{for}\:x+6+2z=25:\quad x=-2z+19

x+6+2z=25

\mathrm{Subtract\:}2z\mathrm{\:from\:both\:sides}

x+6+2z-2z=25-2z

\mathrm{Simplify}

x+6=25-2z

\mathrm{Subtract\:}6\mathrm{\:from\:both\:sides}

x+6-6=25-2z-6

\mathrm{Simplify}

x=-2z+19

\mathrm{Subsititute\:}x=-2z+19

\begin{bmatrix}5\left(-2z+19\right)+18+5z=0\end{bmatrix}

---------------------------------------------------

\mathrm{Simplify}

5\left(-2z+19\right)+18+5z=0

\mathrm{Simplify}\:5\left(-2z+19\right)+18+5z:\quad -5z+113

\begin{bmatrix}-5z+113=0\end{bmatrix}

---------------------------------------------------

\mathrm{Isolate}\:z\:\mathrm{for}\:-5z+113=0:\quad z=\frac{113}{5}

\mathrm{Subtract\:}113\mathrm{\:from\:both\:sides}

-5z+113-113=0-113

\mathrm{Simplify}

-5z=-113

z=\frac{113}{5}

\mathrm{For\:}x=-2z+19

\mathrm{Subsititute\:}x=-\frac{131}{5},\:z=\frac{113}{5}

y=6+\frac{113}{5}

---------------------------------------------------

6+\frac{113}{5}=\frac{143}{5}

y=\frac{143}{5}

---------------------------------------------------

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

\bf{x=-\dfrac{131}{5},\:z=\dfrac{113}{5},\:y=\dfrac{143}{5}}

Answered by Anonymous
2

\mathrm{Subtract\:}2z\mathrm{\:from\:both\:sides}

x+6+2z-2z=25-2z

\mathrm{Subtract\:}6\mathrm{\:from\:both\:sides}

x+6-6=25-2z-6

\mathrm{Subsititute\:}x=-2z+19

\begin{bmatrix}5\left(-2z+19\right)+18+5z=0\end{bmatrix}

5\left(-2z+19\right)+18+5z=0

\begin{bmatrix}-5z+113=0\end{bmatrix}

---------------------------------------------------

\mathrm{Isolate}\:z\:\mathrm{for}\:-5z+113=0:\quad z=\frac{113}{5}

[

-5z+113-113=0-113

z=\frac{113}{5}

\mathrm{For\:}x=-2z+19

y=6+\frac{113}{5}

---------------------------------------------------

6+\frac{113}{5}=\frac{143}{5}

y=\frac{143}{5}

Similar questions