Math, asked by Anonymous, 11 months ago

x2 - 5x + 6 = 0 \\ then \: find \\\alpha 3 - \beta 3

Answers

Answered by Crystall91
3

x²-5x+6 =0

=>x² -(3x+2x)+6 = 0

=> x² - 3x-2x + 6 = 0

=>(x²-3x)+(-2x+6) = 0

=>x(x-3) +-2(x-3) = 0

=>(x-2)+(x-3) = 0

~> x- 2 = 0 so, x = 2

~> x-3 = 0 so, x = 3

Here,

 \alpha  = 2 \: \:  and \beta  = 3

 { \alpha }^{3}   -  { \beta }^{3}  = 2 {}^{3}  - {3}^{3}  = 8 - 27 =-19 (or 19)

Cheers!

Answered by Anonymous
4

Correct Question :-

x² - 5x + 6 = 0 then find  \sf  \alpha^3 - \beta^3

Solution :-

x² - 5x + 6 = 0

Split the middle term

⇒ x² - 3x - 2x + 6 = 0

⇒ x(x - 3) - 2(x - 3) = 0

⇒ (x - 3)(x - 2) = 0

⇒ x - 3 = 0 , x - 2 = 0

⇒ x = 3, x = 2

Here,

 \sf (i) \: If \:  \alpha = 3 \: \:    \beta = 2

 \sf  \alpha^3 - \beta^3

 \sf  =  {(3)}^{3}  -  {(2)}^{3}

 \sf  = 27 - 8

 \sf  =19

 \sf (ii) \: If \:  \alpha = 2 \: \:    \beta = 3

 \sf  \alpha^3 - \beta^3

 \sf  =  {(2)}^{3}  -  {(3)}^{3}

 \sf  = 8 - 27

 \sf  = - 19

 \sf  \alpha^3 - \beta^3 = - 19

 \bf  \alpha^3 - \beta^3 =19 \: or \: - 19

Similar questions