Math, asked by saisharanchenchala25, 1 month ago


y(1 + xy +  {x}^{2}  {y}^{2} )dx \:  + x(1 - xy +  {x}^{2}  {y}^{2} )dy \:  = 0

Answers

Answered by Anonymous
75

Solution :

\sf{y(1 + xy + x^{2}y^{2})dx + x(1 - xy + x^{2}y^{2})dy = 0} \\ \\

\sf{let\:t = xy, then\:y = \dfrac{t}{x}\:and\: dy = \dfrac{xdt - tdx}{x^{2}}} \\ \\

\boxed{\begin{minipage}{8 cm}$\sf{\underline{To\:find\:dy = \dfrac{xdt - tdx}{x^{2}}}} : \\ \\ \\ \sf{:\implies \dfrac{dy}{dx} = \dfrac{d}{dx}\bigg(\dfrac{t}{x}\bigg)} \\ \\ \textsf{By using the quotient rule of differentiation, we get :} \\ \\ \sf{:\implies \dfrac{dy}{dx} = \dfrac{x\dfrac{dt}{dx} - t\dfrac{dx}{dx}}{x^{2}}} \\ \\ \sf{:\implies dy = \dfrac{xdt - tdx}{dx \times x^{2}} \times dx} \\ \\ \sf{:\implies dy = \dfrac{xdt - tdx}{x^{2}}} \\ \\ \sf{Hence,\:dy = \dfrac{xdt - tdx}{x^{2}}}$\end{minipage}} \\ \\

By substituting the value of xy, y and dy in the equation, we get :

:\implies \sf{\bigg[\bigg(\dfrac{t}{x}\bigg)\bigg(1 + t + t^{2}\bigg)dx\bigg] + \bigg[x\bigg(1 - t + t^{2}\bigg)\bigg(\dfrac{xdt - tdx}{x^{2}}\bigg)\bigg]  = 0} \\ \\

:\implies \sf{\bigg[\bigg(\dfrac{t}{x}\bigg)\bigg(1 + t + t^{2}\bigg)dx\bigg] + \bigg[x\bigg(1 - t + t^{2}\bigg)\bigg(\dfrac{dt}{x} - \dfrac{tdx}{x^{2}}\bigg)\bigg]  = 0} \\ \\

:\implies \sf{\bigg[\bigg(\dfrac{t}{x}\bigg)\bigg(1 + t + t^{2}\bigg)dx - \bigg(\dfrac{t}{x}\bigg)\bigg(1 - t + t^{2}\bigg)dx\bigg]  = \bigg(t - t^{2} - 1\bigg)dt} \\ \\

:\implies \sf{\bigg[\bigg(\dfrac{t}{x}\bigg)\bigg\{\bigg(1 + t + t^{2}\bigg) - \bigg(1 - t + t^{2}\bigg)\bigg\}\bigg]dx  = \bigg(t - t^{2} - 1\bigg)dt} \\ \\

:\implies \sf{\bigg[\bigg(\dfrac{t}{x}\bigg)\bigg(1 + t + t^{2} - 1 + t - t^{2}\bigg)\bigg]dx  = \bigg(t - t^{2} - 1\bigg)dt} \\ \\

:\implies \sf{\bigg[\bigg(\dfrac{t}{x}\bigg)\bigg(2t\bigg)\bigg]dx  = \bigg(t - t^{2} - 1\bigg)dt} \\ \\

:\implies \sf{\bigg(\dfrac{2t^{2}}{x}\bigg)dx  = \bigg(t - t^{2} - 1\bigg)dt} \\ \\

:\implies \sf{\bigg(\dfrac{1}{x}\bigg)dx = \bigg(\dfrac{t - t^{2} - 1}{2t^{2}}\bigg)dt} \\ \\

By integrating on both the sides, we get :

:\implies \displaystyle\int \sf{\bigg(\dfrac{1}{x}\bigg)dx} = \displaystyle\int \sf{\bigg(\dfrac{t - t^{2} - 1}{2t^{2}}\bigg)dt} \\ \\

:\implies \displaystyle\int \sf{\bigg(\dfrac{1}{x}\bigg)dx} = \displaystyle\int \sf{\bigg(\dfrac{t}{2t^{2}}\bigg)dt} - \displaystyle\int \sf{\bigg(\dfrac{t^{2}}{2t^{2}}\bigg)dt} - \displaystyle\int \sf{\bigg(\dfrac{1}{2t^{2}}\bigg)dt} \\ \\

:\implies \sf{\bigg(In|x|\bigg) = \dfrac{1}{2}\bigg(In|t|\bigg) - \dfrac{1}{2}\bigg(t\bigg) + \bigg(\dfrac{1}{2t}\bigg) + C}  \\ \\

Now, by substituting the value of t in the equation, we get :

:\implies \sf{\bigg(In|x|\bigg) = \dfrac{1}{2}\bigg(In|xy|\bigg) - \dfrac{1}{2}\bigg(xy\bigg) + \bigg(\dfrac{1}{2xy}\bigg) + C}  \\ \\

\boxed{\therefore \sf{\bigg(In|x|\bigg) = \dfrac{1}{2}\bigg(In|xy|\bigg) - \dfrac{1}{2}\bigg(xy\bigg) + \bigg(\dfrac{1}{2xy}\bigg) + C}}  \\ \\


Anonymous: Great !
Anonymous: Thanka!
BrainlyPopularman: Nice
Anonymous: Thanka!
mddilshad11ab: Outstanding¶
Anonymous: Thanks both! :)
Answered by Anonymous
100

Answer

dy/dx =y (1+xy+x^2y^2/  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x(1-xy+x^2y^2)

Let \:  U=xy

then \:  y = u/x => dy= (xdy - udx/x^2)

(x   \:  \:  \:    du - udx) /x^2   dx =  \\  \:  \:  \:  \:  \:  \:  \:  \: \:  y/x (1+u+u^2) /(1-u+u^2)

xdu - udx/dx = u (1+u+u^2) / \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 1-u+u^2

we \:  get,

x   \:  \:  \:  \:  \:  du/dx = u(1+u+u^2) + \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: u(1-u+u^2) /1-u + u^2

x   \:  \:  \:  \: du/dx = 2(u+u^3) /(1-u+u^2)

du   ( 1 - u+u^2/2(u+u^3) )= dx/x

Integrate \:  \:   both  \:  \: side

ln |x| = -1/2 \:  u+1/2  \:  ln |u| + 1/2  u^2 + c

u= xy

ln  |x| = - xy/ 2 + 1/2  \: ln | xy| +  1/ xy + c

Step-by-step explanation:

@BrainlyGENIUS

Similar questions
Math, 1 month ago