Math, asked by manishkumarmahato, 1 month ago


y = { \sec}^{ - 1}  ( \frac{1}{1 - 2 {x}^{2} } ) \:  \: find \: \:  \frac{dy}{dx}
How to solve this one ?​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

y =  \sec^{ - 1} ( \frac{1}{1 - 2 {x}^{2} } )  \\

Let x= sin(θ)

 \implies y =  \sec^{ - 1} ( \frac{1}{1 - 2 \sin^{2} ( \theta) } )  \\

 \implies y =  \sec^{ - 1} ( \frac{1}{\cos( 2\theta) } )  \\

 \implies y =  \sec^{ - 1} ( \sec (  2\theta)  )  \\

 \implies y =    2 \sin ^{ - 1} (x)  \\

 \implies \frac{dy}{dx}  =  \frac{ 2}{ \sqrt{1 -  {x}^{2} } } \\

Similar questions