Math, asked by kartick1968gmailcom, 1 year ago


y =  \sqrt{4 +  \sqrt{4 +  \sqrt{4 + ......} } }
find y

Answers

Answered by shadowsabers03
8

y=\sqrt{4+\sqrt{4+\sqrt{4+......}}}

⇒  Square both the sides.

y^2=\left(\sqrt{4+\sqrt{4+\sqrt{4+......}}}\right)^2 \\ \\ \\ y^2=4+\sqrt{4+\sqrt{4+......}}

⇒  Subtract 4 from both sides.

y^2-4=4+\sqrt{4+\sqrt{4+......}}-4 \\ \\ \\ y^2-4=\sqrt{4+\sqrt{4+......}}

⇒  Now the RHS became its first form. Take RHS as y.

y^2-4=y\ \ \ \ \ \ \ \ \ \ \left[\because y=\sqrt{4+\sqrt{4+......}}\right]

⇒  Subtract y from both sides.

y^2-y-4=0

⇒  Now, factorize.

y^2-y-4=0 \\ \\ \\ \\ \displaystyle y^2 \ - \ \frac{1-\sqrt{17}}{2}y \ - \ \frac{1+\sqrt{17}}{2}y \ - \ 4 \ =\ 0 \\ \\ \\ \\ y\left(y-\frac{1-\sqrt{17}}{2}\right)-\frac{1+\sqrt{17}}{2}\left(y-\frac{1-\sqrt{17}}{2}\right)=0 \\ \\ \\ \\ \left(y-\frac{1+\sqrt{17}}{2}\right)\left(y-\frac{1-\sqrt{17}}{2}\right)=0 \\ \\ \\ \\ \\ \large y=\text{$\bold{\frac{1+\sqrt{17}}{2}}$}\ \ \ \ \ ; \ \ \ \ \ y=\text{$\bold{\frac{1-\sqrt{17}}{2}}$}

Thus we got the answer!

\displaystyle \large y=\text{$\bold{\frac{1 \pm \sqrt{17}}{2}}$}

Answered by Anonymous
10
 \huge{\boxed{\mathfrak{Answer\::-}}}

♦ As we are provided that

 y = \sqrt{4 + \sqrt{4 +\sqrt{4 + ...}}}

♦ As it goes to the infinity

Then by Squaring both sides we get

 y^2 = \sqrt{4 + \sqrt{4 +\sqrt{4 + ...}}}^2

 y^2 = 4 + \sqrt{4 + \sqrt{4 +\sqrt{4 + ...}}}

♦ Now as  y = \sqrt{4 + \sqrt{4 +\sqrt{4 + ...}}} we can write above as

 y^2 = 4 + y

♦ Now by making RHS = 0 .

 y^2 - y - 4 = 0

• We get a quadratic equation

♦ Now by using quadratic formula that .

 x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

>> Here a,b,c are the numeric values

x = y

a = 1

b = -1

c = -4

♦ So by substituting values of a , b and c

 y = \dfrac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-4)}}{2(1)}

 y = \dfrac{1 \pm \sqrt{1 + 16}}{2}

 y = \dfrac{1 \pm \sqrt{17}}{2}

♦ So value of y is either

 y = \dfrac{1 + \sqrt{17}}{2}

or

 y = \dfrac{1 - \sqrt{17}}{2}
Similar questions