Physics, asked by shyamsah743, 5 months ago

दो गोल कार बूंदों की त्रिज्या ओं का अनुपात 1:3 है उनके सीमांग विवो का अनुवाद क्या होगा​

Answers

Answered by bhagyashreechowdhury
1

Given:

दो गोल कार बूंदों की त्रिज्या ओं का अनुपात 1:3 है

To find:

उनके सीमांग विवो का अनुवाद क्या होगा​

Solution:

Let,

"v" → the terminal velocity of the first spherical raindrop

"r" → the radius of the first spherical raindrop

"V" → the terminal velocity of the second spherical raindrop.

"R" → the radius of the second spherical raindrop

Since the ratio of the radii of the two raindrops is 1:3, then, let,

r be "x"

and

R be "3x"

We know the formula of terminal velocity is:

\boxed{\bold{v = \frac{2}{9} \times \frac{r^2\:(\rho \:-\:\sigma  )g}{\eta} }}

where

ρ = mass density of the particles

σ = mass density of the fluid

η = dynamic viscosity

g = gravitational acceleration

By using the above formula, we get

The terminal velocity of the first raindrop will be,

v =   \frac{2}{9} \times \frac{r^2\:(\rho \:-\:\sigma  )g}{\eta}=\frac{2}{9} \times \frac{x^2\:(\rho \:-\:\sigma  )g}{\eta} . . . .  Equation 1

The terminal velocity of the second raindrop will be,

V  = \frac{2}{9} \times \frac{R^2\:(\rho \:-\:\sigma  )g}{\eta}= \frac{2}{9} \times \frac{(3x)^2\:(\rho \:-\:\sigma  )g}{\eta} . . . . Equation 2

Now, from equation 1 and equation 2, we get

The ratio of their terminal velocity will be,

\frac{v}{V} = \frac{ \frac{2}{9} \times \frac{x^2\:(\rho \:-\:\sigma  )g}{\eta} }{\frac{2}{9} \times \frac{(3x)^2\:(\rho \:-\:\sigma  )g}{\eta} }

on cancelling all the similar terms, we get

\implies \frac{v}{V} = \frac{x^2}{(3x)^2 }

\implies \frac{v}{V} = \frac{x^2}{9x^2 }

\implies \bold{\frac{v}{V} = \frac{1}{9 }}  

Thus, the ratio of the terminal velocities of the two raindrops is → 1 : 9.

---------------------------------------------------------------------------------------------------

Also View:

The two raindrops of radii 0.5mm and 1.0mm are falling on a metallic plate. The ratio of the velocities of these drops are?

brainly.in/question/8043651

Two raindrops reach the earth with their terminal velocities in the ratio 25:64. The ratio of their radii is​?

brainly.in/question/17069940

8 raindrops of radius 1 mm each falling down with a terminal velocity of 5 cm/s coalesce to form a bigger drop. Find the terminal velocity of a bigger drop?

brainly.in/question/1827427

Similar questions