Math, asked by awantika2363, 1 year ago

दिखाइए कि 9^{n+1} - 8n - 9 64से विभाज्य है जहाँ n एक धन पूर्णाक है।

Answers

Answered by 8707097291
0

Answer check kar lo kuch na samajh me aaye to batana

Attachments:
Answered by lavpratapsingh20
0

Answer:

Step-by-step explanation:

(1+x)^{n+1} का प्रसार करने पर,

(1+x)^{n+1} = 1 + n+1C_{1}x + n+1C_{2} x^{2} + n+1C_{3} x^{3} + ....

x = 8 रखने पर,

9^{n+1} = 1 + (n+1).8 + n+1C_{2} × 64 + n+1C_{3} 8^{3} + .....

= 8n + 9 + n+1C_{2} × 64 + n+1C_{3} 8^{3} + ....

9^{n+1} - 8n - 9 = 64 × (n+1C_{2} + n+1C_{3} . 8 + .....)

अतः 9^{n+1} - 8n - 9, संख्या 64 से विभाज्य है।

Similar questions