दर्शाइए कि
Answers
Answer:
Step-by-step explanation:
अंश का nवां पद = n (n+1)² = n(n²+2n+1)
= n³+2n²+n
अंश के इन पदों का योग s₁ = Σn³+2Σn² +Σn
n²(n+1)²/4 + 2n(n+1)(2n+1)/6 + n(n+1)/2
= n(n+1)/12 [3n(n+1) + 4(2n+1) +6]
= n(n+1)/12[3n²+3n+8n+4+6]
= n(n+1)/12[3n²+11n+10]
हर का nवां पद = n²(n+1) = n³+n²
हर के n पदों का योग = s₂ =Σn³+ Σn²
= n²(n+1)²/4 + n(n+1)(2n+1)/6
=n(n+1)/12[3n(n+1)+2(2n+1)]
= n(n+1)/12[3n²+3n+4n+2]
= n(n+1)12[3n²+7n+2]
s₁/s₂ = 3n+5/3n+1
दर्शाया की
Step-by-step explanation:
aₙ = n(n + 1)²/(n²(n + 1))
∑ aₙ = ∑n(n + 1)² /∑ (n²(n + 1))
∑n(n + 1)² = ∑ n(n² + 2n + 1)
= ∑ n³ + 2n² + n)
= ∑ n³ + 2∑n² + ∑n
= ((n)(n+1)/2)² + 2(n)(n+1)(2n + 1)/6 + n(n+1)/2
= ( n(n+1)/12) ( 3n(n+1) + 4(2n + 1) + 6)
= ( n(n+1)/12) ( 3n² + 3n + 8n + 4 + 6)
= ( n(n+1)/12) ( 3n² + 11n +10)
= ( n(n+1)/12) ( 3n² + 6n + 5n +10)
= ( n(n+1)/12) (n + 2)(3n + 5)
= n(n + 1)(n+2)(3n + 5)/12
∑ (n²(n + 1) = ∑ (n³ + n²)
= ∑ n³ + ∑n²
= ((n)(n+1)/2)² + (n)(n+1)(2n + 1)/6
= ( n(n+1)/12) ( 3n(n+1) + 2(2n + 1) )
= ( n(n+1)/12) ( 3n²+ 3n + 4n +2 )
= ( n(n+1)/12) ( 3n²+ 7n +2 )
= ( n(n+1)/12) ( 3n²+ 6n + n +2 )
= ( n(n+1)/12) (n +2 ) (3n + 1)
= n(n + 1)(n+2)(3n + 1)/12
(n(n + 1)(n+2)(3n + 5)/12)/ n(n + 1)(n+2)(3n + 1)/12
= (3n + 5)/(3n + 1)
सिद्ध किया की
और पढ़ें
x के किस मान के लिए संख्याएँ - \dfrac{2}{7},\,x,\,-\dfrac{7}{2} गुणोत्तर श्रेणी में हैं
brainly.in/question/9228862
मान ज्ञात कीजिए \sum_{k=1}^{11} (2 + 3^k))
brainly.in/question/9228853
brainly.in/question/9240409