Math, asked by narayanruchitha, 1 year ago

that Sin A + Cos A / Sin A minus Cos A + Sin A minus Cos A divided by sin a + Cos A equals 2 by 1 - 2 cos square A​

Answers

Answered by MaheswariS
38

\textsf{Given:}

\mathsf{\frac{sin\;A+cos\;A}{sin\;A-cos\;A}+\frac{sin\;A-cos\;A}{sin\;A+cos\;A}}

\mathsf{=\frac{(sin\;A+cos\;A)^2+(sin\;A-cos\;A)^2}{(sin\;A-cos\;A)(sin\;A+cos\;A)}}

\textsf{Using the following algebraic identities}

\boxed{\begin{minipage}{4cm}\mathsf{$\bf(a+b)^2=a^2+b^2+2ab\\\\(a-b)^2=a^2+b^2-2ab\\\\(a-b)(a+b)=a^2-b^2$}\end{minipage}}

\textsf{we get}

\mathsf{=\frac{sin^2A+cos^2A+2\,sin\,A\,cos\,A+sin^2A+cos^2A-2\,sin\,A\,cos\,A}{sin^2A-cos^2A}}

\textsf{Using}

\boxed{\mathsf{sin^2\theta+cos^2\theta=1}}

\mathsf{=\frac{1+2\,sin\,A\,cos\,A+1-2\,sin\,A\,cos\,A}{sin^2A-cos^2A}}

\mathsf{=\frac{2}{sin^2A-cos^2A}}

\mathsf{=\frac{2}{1-cos^2A-cos^2A}}

\mathsf{=\frac{2}{1-2cos^2A}}

\implies\boxed{\mathsf{\frac{sin\;A+cos\;A}{sin\;A-cos\;A}+\frac{sin\;A-cos\;A}{sin\;A+cos\;A}=\frac{2}{1-2cos^2A}}}

Answered by bumithrabobbari
8

Answer

= sin² a + cos²a+2 sin a.cos a+sin²a+cos²a-2sin a.cos a/sin²a-cos²a

=2/sin²a-cos²a =2/sin²a-cos²a

= 2/1-2cos²a

=2/sin ²a+cos²a-2cos²a =2/sin²a-cos²a

LHS =RHS

Similar questions