Math, asked by VijayaLaxmiMehra1, 1 year ago

The 26th, 11th and the last term of AP are 0, 3 , and - 1 / 5 respectively. Find the common difference and the number of terms.

Answers

Answered by Anonymous
33

\underline{\mathfrak{Solution : }}


\mathsf{Formula \: to \: be \: used : }<br /> \\ \\<br /><br />\boxed{\mathsf{\implies T_{n} \: = \: a \: + \: ( n \: - \: 1 )d }}


\mathsf{Let,} \\ \\<br /><br />\mathsf{\implies First \: term \: = \: a } \\ \\<br /><br />\mathsf{\implies Common \: difference\: = \: d } \\ \\<br /><br />\mathsf{\implies No. \: of \: terms \: = \: n}<br />



\underline{\mathsf{Given,}}


\mathsf{ \implies T_{26} \: = \: a \: + \:( 26 \: - \:1 )d } \\ \\<br /><br />\mathsf{\implies 0 \: = \: a \: + \: 25d } \\ \\<br /><br />\mathsf{\implies 0 \: - \: 25d \: = \: a } \\ \\<br /><br />\mathsf{\therefore \quad a \: = \: -25d  \quad...(1)}

\underline{\mathsf{ \:  \: And,} \:  \: }


\mathsf{\implies T_{11} \: = \: a \: + \: ( 11 \: - \: 1)d} \\ \\<br /><br />\mathsf{\implies 3 \: = \: a \: + \: 10d \qquad...(2)} \\ \\<br /><br />\mathsf{Plug \: the \: value \: of \: ( 1 ) \: in \: (2),}


 \mathsf{ \implies 3 \:  =  \: - 25d \:  +  \: 10d } \\  \\  \mathsf{ \implies 3 \:  =  \:  - 15d} \\  \\  \mathsf{ \implies d \:  =  \:  \dfrac{ \:  \:  \: 3  \: \: }{ - 15 \: }} \\  \\ \mathsf{ \therefore \quad d \:  =  \:  \dfrac{ - 1 \: }{ \:  \: 5}}


\mathsf{Plug \: the \: value \: of \: \textbf{d} \: in \: (1),} \\  \\ <br /><br />\mathsf{\implies a \: = \: -25d } \\ \\<br /><br />\mathsf{\implies a \: = \: (-25)  \:  \times  \: (\dfrac{-1}{5})} \\  \\  \mathsf{ \implies a \:  =  \:  \dfrac{25}{5} } \\  \\  \mathsf{ \therefore \quad a \:  =  \: 5 \: }<br /><br />


\underline{\mathsf{\: \: Now,}\: \: }


\mathsf{\implies l \: = \: a \: + \: ( n \: - \: 1)d } \\ \\<br /><br />\mathsf{Plug \: the \: value \: of \: \textbf{a} \: and \: \textbf{d},}

 \mathsf{ \implies  \dfrac{ - 1 \: }{5}  \:  =  \: 5 \:   +  \: ( n \:  -  \: 1)( \dfrac{ - 1 \: }{5}) } \\  \\  \mathsf{ \implies  \dfrac{ - 1 \: }{5}  \:  =  \: 5 \:  -  \: \dfrac{ n  }{5} \:  +  \:  \dfrac{1}{5}  } \\  \\  \mathsf{ \implies  \frac{ - 1 \: }{ \cancel{5}}  \:  =  \:  \dfrac{25 \:  -  \: n \:  +  \: 1}{ \cancel{5}} } \\  \\  \mathsf{ \implies  - 1 \:  =  \: 25 \:  -  \: n \:  +  \: 1}


 \mathsf{ \implies n \:  =  \: 25 \:  +  \: 1 \:  +  \: 1} \\  \\  \mathsf{ \therefore \quad n \:  =  \: 27}



\boxed{\underline{\mathsf{\implies Common \: difference \: = \:  \dfrac{-1 \: }{5} \:  \: and ,  \:  \: No. \: of \: terms \: = \: 27. }}\: \:}

Similar questions