Math, asked by samgeegeorge, 10 months ago

The 3rd term of an AP is 3 and the 11th term is -21, find its first term and common difference.

Answers

Answered by Abhishek474241
62

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • 3rd term of an ap is 3
  • 11th term =-21

{\sf{\green{\underline{\large{To\:find}}}}}

  • First term
  • and
  • common difference

{\sf{\pink{\underline{\Large{Explanation}}}}}

Let the common difference and first term of an ap be a and d

Then

Tn = a+(n-1)d

\tt{T_3=a+(3-1)d=3}

\rightarrow\tt{T_3=a+(3-1)d=3}

\rightarrow\tt{T_3=a+(2)d=3}

\rightarrow\tt{a+(2)d=3}

\rightarrow\tt{T_3=a+2d=3}_____(1)

Now 11th term

\tt{T_{11}=a+(11-1)d=-21}

\rightarrow\tt{T_={21}=a+(11-1)d=-21}

\rightarrow\tt{T_{21}=a+(10)d=-21}

\rightarrow\tt{a+10d=-21}_____(2)

Now solving equations (1) and (2)

a+10d=-21

a+2d=3

=>8d=-24

=>d=-3

utting the value in Equation 2

a+2d=3

=>a-6=3

=>a=9

Hence,value of a is 9 and d=-3

Answered by mddilshad11ab
63

\sf\large\underline{Let:}

  • \rm{The\: first\: term\:AP=a}
  • \rm{Common\: difference=d}

\sf\large\underline{To\: Find:}

  • \rm{1st\: term\:and\: Common\: difference\:AP=?}

\sf\large\underline{Solution:}

  • By applying formula of Tn to calculate first term and common difference ]

\sf\large\underline{Formula\: used:}

\rm{\implies T_{n}=a+(n-1)d}

\sf\underline{Given\:in\:1st\:case:}

\rm{\implies The\:3rd\:term\:of\:AP=3}

\rm{\implies T_{3}=a+(3-1)d}

\rm{\implies a+2d=3----(i)}

\sf\underline{Given\:in\:2nd\:case:}

\rm{\implies The\:11th\:term\:of\:AP=-21}

\rm{\implies T_{11}=a+(11-1)d}

\rm{\implies a+10d=-21-----(ii)}

  • Now, solving equation 1 and 2 ]

\rm{\implies a+2d=3}

\rm{\implies a+10d=-21}

  • by solving equation we get here]

\rm{\implies -8d=24}

\rm{\implies d=-3}

  • putting the value of d=-3 in eq 1]

\rm{\implies a+2d=3}

\rm{\implies a+2(-3)=3}

\rm{\implies a-6=3}

\rm{\implies a=3+6}

\rm{\implies a=9}

\sf\large{Hence,}

\tt{\implies Common\:difference=-3}

\tt{\implies First\:term=9}

Similar questions