Math, asked by mracletitan100, 9 months ago

the 4th term of an arithmetic progression is 3, and the 16th term is -45. find the 21st term​

Answers

Answered by atahrv
5

AnsweR :

\large{\dag\:\:\boxed{\star\:\:a_{21}\:=\:(-65)\:\:\star}\:\:\dag}

ExplanatioN :

\dagger GiveN :–

  • a₄ = 3
  • a₁₆ = (-45)

\dagger To FinD :–

  • a₂₁

\dagger Formula ApplieD :–

  • \boxed{\bf{\star\:\:a_n\:=\:a\:+\:(n\:-\:1)d\:\:\star}}

\dagger SolutioN :–

For finding a₂₁ we need to find a and d first.

We have ,

\rightarrow\sf{a_4\:=\:3}

\rightarrow\sf{a_4\:=\:a\:+\:(4\:-\:1)d}

\rightarrow\sf{3\:=\:a\:+\:3d\:\:----(1)}

and also ,

\rightarrow\sf{a_{16}\:=\:(-45)}

\rightarrow\sf{a_{16}\:=\:a\:+\:(16\:-\:1)d}

\rightarrow\sf{(-45)\:=\:a\:+\:15d\:\:----(2)}

Subtracting Equation(2) from Equation(1) :-

\rightarrow\sf{(-45)\:-\:(3)\:=\:a\:+\:15d\:-(a\:+\:3d)}

\rightarrow\sf{(-48)\:=\:a\:-\:a\:+15d\:-\:3d}

\rightarrow\sf{(-48)\:=\:12d}

\rightarrow\sf{d\:=\:(-\dfrac{48}{12} )}

\rightarrow\boxed{\sf{d\:=\:(-4 )}}

Putting this value of 'd' in Equation(1) , we get :

\rightarrow\sf{3\:=\:a\:+\:(3)(-4)}

\rightarrow\sf{3\:=\:a\:-\:12}

\rightarrow\sf{a\:=\:12\:+\:3}

\rightarrow\boxed{\sf{a\:=\:15}}

Now , we have a = 15 , d = (-4) , n = 21 .

Putting these values in the formula :

\rightarrow\sf{a_n\:=\:a\:+\:(n\:-\:1)d}

\rightarrow\sf{a_{21}\:=\:15\:+\:(21\:-\:1)(-4)}

\rightarrow\sf{a_{21}\:=\:15\:+\:[20\:\times\:(-4)]}

\rightarrow\sf{a_{21}\:=\:15\:+\:(-80)}

\rightarrow\boxed{\bf{a_{21}\:=\:(-65)}}

∴ The 21st Term of this A.P. is (-65) .

Similar questions