Math, asked by pjoangeorginasunil, 8 months ago

the 6th term of an ap is -10 and its 10th term is -26. determine its 15th term

Answers

Answered by SarcasticL0ve
50

GivEn:-

  • 6th term of an AP \sf ( a_6 ) = -10

  • 10th term of an AP \sf ( a_{10} ) = -26

To find:-

  • 15th term of AP \sf ( a_{15} ) is?

SoluTion:-

\;\;\;\sf \star\;{\underline{\boxed{\sf{\pink{As\;per\;givEn\; QueStion\;:}}}}}\;\star

✇ 6th term of an AP \sf ( a_6 ) = -10

\dashrightarrow\sf a_6 = a + 5d

\dashrightarrow\sf -10 = a + 5d ----(1)

✇ 10th term of an AP \sf ( a_{10} ) = -26

\dashrightarrow\sf a_{10} = a + 9d

\dashrightarrow\sf -26 = a + 9d ----(2)

━━━━━━━━━━━━━━━

{\underline{\sf{\red{Substract\;eq(2)\;form\;eq(1)\;-}}}}

⠀⠀⠀⠀⠀⠀⠀-10 = a + 5d

⠀⠀⠀⠀⠀⠀⠀-26 = a + 9d

⠀⠀⠀⠀⠀ ━━━━━━━━━━━

⠀⠀⠀⠀⠀ ⠀⠀16 = 0 - 4d

⠀⠀⠀⠀⠀ ━━━━━━━━━━━

\therefore\;\sf We\;geT,

\dashrightarrow\sf 16 = -4d

\dashrightarrow\sf d = - \cancel{ \dfrac{16}{4}}

\dashrightarrow\sf \purple{d = - 4}

{\underline{\sf{\red{Now\;put\;value\;of\;d\;in\;eq(1)\;-}}}}

\dashrightarrow\sf -10 = a + 5(-4)

\dashrightarrow\sf -10 = a - 20

\dashrightarrow\sf \purple{a = 10}

━━━━━━━━━━━━━━━

{\underline{\sf{\pink{Here,\;we\;have\;to\;find\;15^{th}\;term\;of\;AP\;-}}}}

\dashrightarrow\sf a_{15} = a + 14d

{\underline{\sf{\red{Now\;put\;the\;givEn\;values,}}}}

\dashrightarrow\sf a_{15} = 10 + 14(-4)

\dashrightarrow\sf a_{15} = 10 - 56

\dashrightarrow\sf \purple{ a_{15} = - 46}

\dag\;\sf \underline{Hence,\;15^{th}\;term\;of\;AP\;is\;- 46.}

━━━━━━━━━━━━━━━

Additional Information:-

\begin{lgathered}\boxed{\begin{minipage}{10 em}$\sf \displaystyle \bullet a_n=a + (n-1)d \\\\\\ \bullet S_n= \dfrac{n}{2} \left(a + a_n\right)$\end{minipage}}\end{lgathered}

Where,

  • \sf a_n is \sf n^{th} terms of an AP.

  • \sf S_n is sum of n terms of an AP.

━━━━━━━━━━━━━━━

Similar questions