Math, asked by nithishacevaram, 1 month ago

the 8th term of the G.P 7,14,28,56,...is ​

Answers

Answered by amansharma264
10

EXPLANATION.

8th term of G.P.

Series = 7, 14, 28, 56. . . . .

As we know that,

First term = a = 7.

Common ratio = r = b/a.

Common ratio = r = 14/7 = 2.

Common ratio = r = 2.

As we know that,

Formula of :

General term of G.P.

⇒ Tₙ = a. rⁿ⁻¹.

⇒ T₈ = a. r⁸⁻¹.

⇒ T₈ = a. r⁷.

Put the values in the equation, we get.

⇒ T₈ = 7 x (2)⁷.

⇒ T₈ = 7 x 128.

⇒ T₈ = 896.

                                                                                                                     

MORE INFORMATION.

Supposition of terms in G.P.

(1) = Three terms as : a/r, a, ar.

(2) = Four terms as : a/r³, a/r, ar, ar³.

(3) = Five terms as : a/r², a/r, a, ar, ar²

Answered by TrustedAnswerer19
22

Answer:

\small{\orange{ \boxed{ \boxed{ \begin{array}{cc}  \hookrightarrow \sf \: \: given \: the \: G.P \: series \:  :  \\  \\  \sf \: 7,14,28,56. \: . \: . \:  \\  \\   \blue{ \underline{\sf \: we \: have \: to \: find : }} \\  \\  \hookrightarrow  \sf \: {8}^{th}  \: term \: of \: the \: G.P \: series   = T_8\\  \\  \\  \red{ \underline{ \sf \: solution :}} \\  \\ \hookrightarrow \: \sf \:  first \: term \: of \: the \: G.P \: series,  \:  a = 7 \\  \\ \hookrightarrow \sf \:common \: ratio \: of \: the \: G.P \: series ,\:  r =  \frac{14}{2}  = 2 \\  \\  \\  \pink{ \underline{ \sf \: we \: know \: that : }} \\  \\ \hookrightarrow \: \sf \: general \: term \: of \:G.P \: series \:  \: T_n= a {r}^{n - 1}   \\  \\  \\  \bf \: now \: according \: to \: the \: question \:  \\  \\  \sf \: T_8 = 7 \times  {2}^{8 - 1}  \\  \\  = 7 \times  {2}^{7}  \\  \\  = 896 \\  \\   \blue{ \boxed{\therefore \sf \:  {8}^{th} \: term \: of \: the \: series \: is = 896}} \\  \\  \end{array}}}}}

Similar questions