Math, asked by amaansyed27, 1 year ago

The abscissa of a point A is twice its ordinate
and B = (10,0). Find the co-ordinates of A if
AB = 5 units.

Answers

Answered by nikhiljeswani77
5

Answer:

hope it helps

mark me brainliest

Attachments:
Answered by ihrishi
12

Step-by-step explanation:

Abscissa = x coordinate

Ordinate = y coordinate

According to the given information:

x = 2y...... (1)

Thus coordinates of point A are (x, y) = (2y, y)

B (10, 0)

Now by distance formula:

AB =  \sqrt{(2y - 10)^{2}  +  (y - 0) ^{2} } \\  \therefore \: 5 = \sqrt{(2y - 10)^{2}  +  (y - 0) ^{2} } \\  squiring \: both \: sides \\  {5}^{2}  = (2y - 10)^{2}  +  (y - 0) ^{2}  \\  \therefore 25 = 4 {y}^{2}   - 40y+ 100  +  {y}^{2}  \\ \therefore 25 = 5 {y}^{2}   - 40y+ 100   \\ \therefore 5 {y}^{2}   - 40y+ 100   - 25 = 0 \\ \therefore 5 {y}^{2}   - 40y+ 75= 0  \\ \therefore 5 ({y}^{2}   - 8y+ 15)= 0 \\ \therefore  {y}^{2}   - 8y+ 15= 0  \\ \therefore  {y}^{2}   - 5y - 3y+ 15= 0  \\ \therefore  y({y}   - 5) - 3(y  - 5)= 0  \\ \therefore  ({y}   - 5)(y - 3)= 0  \\ \therefore  ({y}   - 5) = 0 \: or \: (y - 3)= 0  \\ \therefore  {y}    = 5 \: or \: y= 3 \\ when \: y = 5 \implies \: x = 2 \times 5 = 10 \\ when \: y = 3 \implies \: x = 2 \times 3 = 6 \\ thus \: the \: coordinates \: of \: point \: a \: are  \\ \: (10, \: 5) \: or \: (6, \: 3)

Similar questions