Physics, asked by yateeshchandra2445, 10 months ago

The acceleration of a particle moving along x- axis is a= -100x+50. It is released from x=2. Here a and x are in SI units. The speed of the particle at origin will be......

Answers

Answered by nirman95
46

Answer:

a = 50 - 100x

 =  > v \dfrac{dv}{dx}  = 50 - 100x

 =  > v \: dv = (50 - 100x)dx

Integrating on both sides :

 =  >  \int v \: dv =  \int \: (50 - 100x)dx

Applying given limits ( i.e. at x = 2m , the Velocity was 0 , and at x = 0 m , Velocity be v)

 =  >  \int_{0}^{v} v \: dv =  \int_{2}^{0}  \: (50 - 100x)dx

 =  >  \bigg \{ \dfrac{ {v}^{2} }{2} \bigg \}_{0}^{v} =  \bigg \{50x - 50 {x}^{2}  \bigg \}_{2}^{0}

 =  >  \dfrac{ {v}^{2} }{2}  =  \{0 - (50 \times 2) \} -  \{0 - (50 \times  {2}^{2}) \}

 =  >  \dfrac{ {v}^{2} }{2}  = 200 - 100

 =  >  \dfrac{ {v}^{2} }{2}  = 100

 =  >  {v}^{2}  = 200

 =  > v =  \sqrt{200}

 =  > v = 10 \sqrt{2} \:  m {s}^{ - 1}

So final answer :

  \boxed{ \boxed{\sf{ \red{ \large{Velocity_{(at \: x  = 0 \: m)} = 10 \sqrt{2} \: m {s}^{ - 1} }}}}}

Answered by ShivamKashyap08
15

Answer:

  • Velocity (v) of the Particle is 10√2 m/s.

Given:

  1. Acceleration (a) = - 100 x + 50
  2. Initial Position x = 2 & Final Position x = 0.

Explanation:

\rule{300}{1.5}

From the Acceleration we Know,

\large \bigstar\;{\boxed{\tt a = v.\dfrac{dv}{dx}}}

\bold{Here}\begin{cases}\text{v Denotes Velocity} \\ \text{dv Denotes small velocity} \\ \text{dx Denotes small distance Covered in small time}\end{cases}

Now,

\large{\boxed{\tt a = v.\dfrac{dv}{dx}}}

Simplifying,

\longmapsto\large{\tt a = v.\dfrac{dv}{dx}}

\longmapsto\large{\tt a.dx = v.dv}

\longmapsto\large{\tt v.dv = a.dx }

Integrating,

\longmapsto\large{\tt \displaystyle\int \tt v.dv = \displaystyle\int \tt a.dx }

Applying limits,

\longmapsto\large{\tt \displaystyle\int\limits_{0}^{v} \tt v.dv = \displaystyle\int\limits_{2}^{0} \tt a.dx }

Here lower limit is x = 2 as its is initial position & Upper limit is x = 0 as it is final position.

Now,

\longmapsto\large{\tt \displaystyle\int\limits_{0}^{v} \tt v.dv = \displaystyle\int\limits_{2}^{0} \tt a.dx }

\longmapsto\large{\tt \displaystyle\int\limits_{0}^{v} \tt v.dv = \displaystyle\int\limits_{2}^{0} \tt (-100x + 50).dx }

\longmapsto\large{\tt \displaystyle\int\limits_{0}^{v} \tt v.dv = \displaystyle\int\limits_{2}^{0} \tt -100x.dx+ \displaystyle\int\limits_{2}^{0} \tt 50.dx }

\longmapsto \large{\tt \Bigg[\dfrac{v^2}{2}\Bigg]^v_0 = \Bigg[\dfrac{-100x^2}{2}\Bigg]^0_2 +  \Bigg[50x\Bigg]^0_2}

\longmapsto \large{\tt \Bigg[\dfrac{v^2}{2}\Bigg]^v_0 = \Bigg[\cancel{\dfrac{-100x^2}{2}}\Bigg]^0_2 +  \Bigg[50x\Bigg]^0_2}

\longmapsto \large{\tt \Bigg[\dfrac{v^2}{2}\Bigg]^v_0 = \Bigg[- 50x^2\Bigg]^0_2 +  \Bigg[50x\Bigg]^0_2}

Substituting,

\longmapsto \large{\tt \dfrac{v^2}{2} = \Bigg[- 50 \times (0)^2 - (-50 \times (2)^2)\Bigg] +  \Bigg[50 \times 0 - 50 \times 2\Bigg]}

\longmapsto \large{\tt \dfrac{v^2}{2} = \Bigg[0 + 200  \Bigg] +  \Bigg[ 0 -100 \Bigg]}

\longmapsto \large{\tt \dfrac{v^2}{2} = \Bigg[200  \Bigg] +  \Bigg[-100 \Bigg]}

\longmapsto\large{\tt \dfrac{v^2}{2} = 200 - 100}

\longmapsto\large{\tt \dfrac{v^2}{2} =  100}

\longmapsto\large{\tt v^2 =  2 \times 100}

\longmapsto\large{\tt v^2 =  200}

\longmapsto\large{\tt v =  \sqrt{200}}

\longmapsto\large{\underline{\boxed{\red{\tt v = 10 \sqrt{2} \; m/s}}}}

Velocity (v) of the Particle is 10√2 m/s.

\rule{300}{1.5}

Similar questions