Physics, asked by srihari890, 4 months ago

The accelration due to gravity on the surface of moon is 1.7 m/s^2. What is the time period of a simple pendulum on the surface of moon, if its time period on the surface of earth is 3.5 seconds? (g on the surface of earth is 9.8 m/s^2)

Answers

Answered by killersm120
0

Answer:

and see videos of pawan wagh academy

Answered by ITZBFF
3

 \sf \red{Given}

 \sf{Gravity \:  of  \: earth \:  (g_{e}) = 9.8  \: m/ s^2}

 \sf{Gravity \:  of \:  moon \:  (g_{m}) =  \: 1.7 m/ s^2}

 \sf{Time  \: period  \: on \:  earth \:  (T_{e}) = 3.5 \: s}

 \sf \red{We  \: have \:  to  \: find : }

 \sf{Time  \: period  \: on \:  moon \:  (T_{m}) =  \: ?}

 \sf \red{We  \: know : }

 \boxed{ \boxed{T \:  =  \: 2 \pi \:  \sqrt{ \frac{l}{g} } }}

 \implies \: T \propto \:  \frac{1}{ \sqrt{g} }  \\

 \implies \:  \frac{T_{e}}{T_{m}}  =  \sqrt{ \frac{g_{m}}{g_{e}} }  \\

 \implies \: T_{m} =  \bigg( \sqrt{ \frac{g_{e}}{g_{m}} }   \: \bigg)T_{e} \\

 \sf \red{Putting  \: the \:  values, \:  we \:  get : }

 \sf{ \implies \: T_{m} =  \bigg( \sqrt{ \frac{9.8}{1.7} }   \: \bigg)  \times 3.5}\\

  \boxed{\boxed{T_{m} \:  = 8.4 \: s}}

Similar questions