Math, asked by 94614544a, 4 months ago

The adjacent sides of a parallelogram ABCD measure 34 cm and 20 cm, and the diagonal
AC measures 42 cm. Find the area of the parallelogram.

Attachments:

Answers

Answered by EnchantedGirl
12

Given:-

  • ABCD is a parallelogram
  • Adjacent sides are 34cm & 20cm
  • Diagonal = 42cm

\\

To find:-

  • Area of parallelogram.

\\

Solution:-

\\

The diagonal divides the parallelogram into two congruent triangles.

We have:

  • a = 20cm
  • b = 34cm
  • c = 42cm

Using the formula,

\mapsto \underline{\boxed{\sf s = \dfrac{a+b+c}{2} }}\\

Putting values,

\displaystyle :\implies \sf s =\frac{20+34+42}{2} \\\\:\implies \sf s = 48cm\\\\

Using the formula,

\displaystyle \mapsto \underline{\boxed{\sf Area.\triangle = \sqrt{s(s-a)(s-b)(s-c)}}}\\\\

Putting values in the formula,

\displaystyle :\implies \sf Ar.\triangle ACD = \sqrt{s(s-a)(s-b)(s-c)} \\\\:\implies \sf Area = \sqrt{48(48-20)(48-34)(48-42)} \\\\:\implies \sf Area = 336cm^2 \\\\

As the diagonal divides the parallelogram into two congruent triangles,

→Ar.ΔACD = Ar.ΔBAC

\\

Therefore,

⇒Ar.ABCD = 2(336)

                   = 672cm²

Hence,

The area of parallelogram is  672cm²

____________

Attachments:

Anonymous: Awsm! :)
Answered by Anonymous
25

\sf {\large{ \underbrace{ \underline{Understanding  \: the  \: Question}}}}

Here we have to find the area of parallelogram. As we know that diagonal of a parallelogram divides it into two equal area or we can say congruent triangles.We can find the area of parallelogram by finding the area of triangles separately.

‎ ‎ ‎ ‎ ‎ ‎

GIVEN:

➢ABCD is parallologram

➢AB=34cm

➢BC=20cm

➢AC=42cm[Diagonal]

‎ ‎

TO FIND:

➢Area of parallelogram ABCD

‎ ‎ ‎ ‎ ‎ ‎

SOLUTION:

In triangle ABC

By Applying “HERON'S FORMULA”

‎ ‎ ‎ ‎ ‎ ‎

Sides of triangle are:-

  • a=34cm
  • b=20cm
  • c=42cm

‎ ‎ ‎ ‎ ‎ ‎

  \mapsto\: { \boxed{ \sf{ S= \dfrac{a+b+c}{2}}}}

‎ ‎ ‎ ‎ ‎ ‎

 \sf{:\implies S =  \dfrac{34 + 20 + 42}{2} }

‎ ‎ ‎ ‎ ‎ ‎

 \sf{:\implies S =  \dfrac{96}{2} }

‎ ‎ ‎ ‎ ‎ ‎

\mapsto \large{\boxed{ { \sf{ \blue{:\implies S=48}}}}}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎

Now we have formula

 \mapsto \begin{gathered} {\boxed{ \sf{Area  \: of \:  triangle= \sqrt{S(S-a)(S-b)(S-c)} }}}\\\end{gathered}

‎ ‎ ‎ ‎ ‎ ‎

‎ ‎

 \sf{ ar.(ABC) = \sqrt{48(48 - 34)(48 -20)(48 - 42 } }

‎ ‎ ‎ ‎ ‎ ‎

 \sf{ ar.(ABC) = \sqrt{48(14)(28 )(6) } }

‎ ‎ ‎ ‎ ‎ ‎

\sf{ar.(ABC)=336cm^{2}}

‎ ‎ ‎ ‎ ‎ ‎

Hence the area of triangle ABC is 336cm².

‎ ‎ ‎ ‎ ‎ ‎

Now triangle ABC and triangle ADC are congruent.

‎ ‎ ‎ ‎ ‎ ‎

It means

  • ar.(ABC)=ar.(ACD)

‎ ‎ ‎ ‎ ‎ ‎

➛ar.(ACD)+ar.(ABC)=ar.(ABCD)

‎ ‎ ‎ ‎ ‎ ‎

➛336cm²+336cm²=672cm²

‎ ‎ ‎ ‎ ‎ ‎

Hence the area of parallelogram is 672cm²

‎ ‎ ‎ ‎ ‎ ‎

‎ ‎ ‎ ‎ ‎ ‎

 \sf {\large{ \underbrace{ \underline{More \:  Formula  \: to  \: know}}}}

》Area of rectangle=L×B

‎ ‎ ‎ ‎ ‎ ‎

》Area of square=Side²

‎ ‎ ‎ ‎ ‎ ‎

》Area of ∆=½×Base×Height

‎ ‎ ‎ ‎ ‎ ‎

》Area of circle=πr²


ItzShrestha41: superb
Anonymous: Thanks :)
Similar questions