Math, asked by abedeenzainul09, 1 month ago

The adjacent sides of a rectangle are (2x + 3y) and (2x - 3y), find its perimeter,​

Answers

Answered by Anonymous
1

Answer:

8x units

Step-by-step explanation:

Given:

The adjacent sides of a rectangle are (2x + 3y) units and (2x - 3y) units.

To find:

Perimeter of the rectangle

Solution:

The formula to calculate the perimeter of a rectangle is

2(l + b)

Where

l and b are the sides of the rectangle.

Substituting the values into the formula,

2[(2x + 3y) + (2x - 3y)]

⇒ 2(2x + 3y + 2x - 3y)

⇒ 2(4x)

8x units

Answered by awesomeamritaa497
1

Let the length be (2x+3y)units  and breadth  be (2x-3y)units

Perimeter of a rectangle= 2(l+b)

                                          =2((2x+3y)+(2x-3y))

                                          =2(2x+3y+2x-3y)

                                          =2(4x)

                                          =8x units

Therefore, perimeter of the rectangle= 8x units.

Hope this helped!

Similar questions