The adjacent sides of a rectangle are (3x) 2-2xy+(5y) 2 and (2x) 2 +(5xy) - (3y) 2 find it's area
Answers
Answered by
4
Answer:
(3x)^2 - 2xy + (5y)^2 = 9x^2 - 2xy + 25y^2
(2x)^2 + 5xy - (3y)^2 = 4x^2 + 5xy - 9y^2
Step-by-step explanation:
(9x^2 - 2xy + 25y^2) (4x^2 + 5xy - 9y^2)
9x^2 (4x^2 + 5xy - 9y^2) - 2xy (4x^2 + 5xy - 9y^2) + 25y^2 (4x^2 + 5xy - 9y^2)
36x^4 + 45x^3 y - 81x^2 y^2 - 8x^3 y - 10 x^2 y^2 + 18x y^2 + 100x^2 y^2 + 125 x y^3 - 225y^4
(2x)^4 + 45x^3 y - (9xy)^2 - (2x)^3 y - 10(xy)^2 + 18xy^2 + (10xy)^2 + (5y)^3 x - 225y^4
I hope this will help you !
Answered by
0
Answer:
The adjacent sides of a rectangle are 3x2 – 2xy + 5y2 and 2x2 + 5xy – 3y2
.
Find the area of the rectangle.
Similar questions