Math, asked by shreelabaroi8986, 10 months ago

The ages of A and B are in ratio 9:4. Seven years hence, the ratio of their ages will be 6:3. Find their ages

Answers

Answered by mddilshad11ab
70

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{Let:}}}}

  • \sf{The\: ratio\:of\: their\:age\:be\:x}
  • \sf{The\:age\:of\:A=9x}
  • \sf{The\:age\:of\:B=4x}

\large{\underline{\red{\rm{To\: Find:}}}}

  • \sf{The\:age\:of\:A\:and\:B}

\large{\underline{\red{\rm{Given:}}}}

  • The ages of A and B are in ratio 9:4. Seven years hence, the ratio of their ages will be 6:3.

\small{\underline{\purple{\rm{According\:to\:the\: Question:}}}}

\rm{\implies \dfrac{9x+7}{4x+7}=\dfrac{6}{3}}

\rm{\implies 3(9x+7)=6(4x+7)}

\rm{\implies 27x+21=24x+42}

\rm{\implies 27x-24x=42-21}

\rm{\implies \cancel{3}x=\cancel{21}}

\rm\green{\implies x=7}

Hence,

\sf\purple{The\:age\:of\:A=9x=9*7=63\: year's}

\sf\green{The\:age\:of\:B=4x=4*7=28\: year's}

Answered by Vamprixussa
29

Let the ages of A and B be x and y respectively.

Given

The ages of A and B are in ratio 9:4.

\implies \dfrac{x}{y} = \dfrac{9}{4}

\implies 4x=9y

\implies 4x-9y=0 --(1)

Seven years hence, the ratio of their ages will be 6:3.

\implies \dfrac{x+7}{y+7} = \dfrac{6}{3}

\implies 3(x+7)=6(y+7)

\implies 3x+21=6y+42

\implies 3x-6y=42-21

\implies 3x-6y=21

\implies x-2y=7--(2)

Solving, (1) and (2), we get,

4x-9y=0\\\underline{4x-8y=28} \ (\bold { By \ multiplying \ the \ second \ equation \ by \ 4})\\\underline{\underline{-y=-28}}\\\implies y = 28

\implies x = 7+2y\\\implies x = 7+56\\\implies x = 63

\boxed{\boxed{\bold{Therefore \ the \ ages \ of \ A \ and \ B \ are \ 63 \ and \ 28 \ years \ respectively}}}}}

                                                       

Similar questions