Math, asked by kaitlynswift, 5 hours ago

The ages of Ajay and Bhaskar are in the ratio 5:7. Five years from now, the ratio of their ages will be 5:6. Find their present ages.

Answers

Answered by tiwarichuthkii3301
1

Answer:

present age of Ajay is 5 years old

and present age of Bhaskar is 7 years old

Attachments:
Answered by SANDHIVA1974
1

Given :

The ages of Ajay and Bhaskar are in the ratio 5:7 .

Five years from now, the ratio of their ages will be 5:6 .

To Find :

Present Age of Ajay and Bhaskar .

Solution :

\longmapsto\tt{Let\:Present\:age\:of\:Ajay\:be=5x}

\longmapsto\tt{Let\:Present\:age\:of\:Bhaskar\:be=7x}

After 5 years :

\longmapsto\tt{Age\:of\:Ajay=5x+5}

\longmapsto\tt{Age\:of\:Bhaskar=7x+5}

A.T.Q :

\longmapsto\tt{\dfrac{5x+5}{7x+5}=\dfrac{5}{6}}

\longmapsto\tt{6(5x+5)=5(7x+5)}

\longmapsto\tt{30x+30=35x+25}

\longmapsto\tt{30x-35x=25-30}

\longmapsto\tt{-5x=-5}

\longmapsto\tt{x=\cancel\dfrac{-5}{-5}}

\purple\longmapsto\:\large\underline{\boxed{\bf\blue{x}\pink{=}\red{1}}}

Value of x is 1 .

Therefore :

\longmapsto\tt{Present\:Age\:of\:Ajay=5(1)}

\longmapsto\tt\bf{5\:yrs}

\longmapsto\tt{Present\:Age\:of\:Bhaskar=7(1)}

\longmapsto\tt\bf{7\:yrs}

Similar questions
World Languages, 8 months ago