Math, asked by muhammednidhal75, 11 months ago

The algebraic form of an arithmetic sequence is 4 n+1 .

a) What is its common difference ?

b) What is its first term ?

c) What is the remainder when each term of this sequence is divided by 4 ?​

Answers

Answered by BrainlyConqueror0901
36

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{First\:term=5}}}

\green{\tt{\therefore{Common\:difference=4}}}

\green{\tt{\therefore{Remainder=1}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given :}} \\  \tt:  \implies  a_{n} = 4n + 1 \\  \ \\  \red{\underline \bold{To \: Find :}}  \\  \tt:  \implies First \: term = ? \\  \\  \tt:  \implies Common \: difference = ? \\  \\  \tt:  \implies Remainder \: when \: each \: term \: is \: divided \: by \: 4 = ?

• According to given question :

 \tt \circ \:  a_{n}  = 4n + 1 \\  \\   \tt\because \:n = 1,2,3,.... \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{1} = 4 \times 1 + 1 \\ \\  \tt:  \implies  a_{1} =4 + 1 \\  \\  \green{\tt:  \implies  a_{1} =5} \\  \\  \bold{For \: n = 2} \\ \tt:  \implies  a_{2} =4 \times 2 + 1 \\  \\ \tt:  \implies  a_{2} =8 + 1 \\  \\  \green{\tt:  \implies  a_{2} = 9} \\  \\  \bold{For \: n = 3} \\ \tt:  \implies  a_{3} = 4 \times 3 + 1 \\  \\ \tt:  \implies  a_{3} =12 + 1

\green{\tt:  \implies  a_{3} =13} \\  \\   \bold{For \: common \: difference} \\ \tt:  \implies d=  a_{2} -  a_{1} \\  \\ \tt:  \implies d = 9 - 5 \\  \\  \green{\tt:  \implies d = 4} \\  \\  \bold{For \: Remainder : } \\ \tt:  \implies 5  \div 4 = 4\times 4+1 \\  \\ \tt:  \implies Remainder = 1 \\  \\ \tt:  \implies 9   \div 4 = 4\times 2+1 \\  \\ \tt:  \implies Remainder = 1 \\  \\ \tt:  \implies 13 \div 4 = 4\times 3+1 \\  \\  \green{\tt:  \implies Remainder = 1} \\  \\   \green{ \tt\therefore For \: all \: term \: of \: this \:A.P\: when\:divide\:by}  \\   \:  \: \green{\tt 4 \: then \: remainder \: gives \: 1}

Answered by Saby123
4

</p><p>\tt{\huge{\pink{Hello!!! }}}

</p><p>\tt{\red{Given \: - }}

</p><p>\tt{\purple{a_{n} = 4n \: + \: 1 }}

</p><p>\tt{\red{\therefore{a_{1} = \: 5 }}}.............(1)

</p><p>\tt{\orange{\therefore{a_{2} = 9 }}} ...............(2)

Hence

</p><p></p><p>\tt{\red{\bullet{\boxed{\boxed{a = 5 }}}}}

</p><p></p><p>\tt{\blue{\bullet{\boxed{\boxed{d = 4 }}}}}

Each form of the number is 4k + 1.

Divided by 4, we get remainder as 1.

Similar questions