The altitude drawn to the base of a isosceles triangle is 8 cm and perimeter is 32 cm. Find the area of the triangle.
Answers
Answered by
21
let ABC be the isosceles triangle, the AD be the altitude
Let AB = AC = x then BC= 32-2x [because parameter = 2 (side) + Base]
since in an isoceles triange the altitude bisects the base so
BD = DC = 16-x
In a triangle ADC, (AC)2=(AD)2+(DC)2AC2=AD2+DC2
x2=82+(16−x)2x2=82+16-x2 ⇒x=10⇒x=10
BC = 32-2x = 32-20 = 12 cm
Hence, required area = 12*BC*AD12*BC*AD= 12*12*1012*12*10 = 60 sq cm
Let AB = AC = x then BC= 32-2x [because parameter = 2 (side) + Base]
since in an isoceles triange the altitude bisects the base so
BD = DC = 16-x
In a triangle ADC, (AC)2=(AD)2+(DC)2AC2=AD2+DC2
x2=82+(16−x)2x2=82+16-x2 ⇒x=10⇒x=10
BC = 32-2x = 32-20 = 12 cm
Hence, required area = 12*BC*AD12*BC*AD= 12*12*1012*12*10 = 60 sq cm
Rico47:
how have you done the last step?
Similar questions
World Languages,
8 months ago
Science,
8 months ago
Art,
8 months ago
Math,
1 year ago
Biology,
1 year ago
Social Sciences,
1 year ago