The altitude drawn to the base of an isosceles triangle is 8cm and the perimeter is 32cm Find the area of the triangle
Answers
Answered by
11
let ABC be the isosceles triangle, the AD be the altitude
Let AB = AC = x then BC= 32-2x [because parameter = 2 (side) + Base]
since in an isoceles triange the altitude bisects the base so
BD = DC = 16-x
In a triangle ADC, (AC)2=(AD)2+(DC)2AC2=AD2+DC2
x2=82+(16−x)2x2=82+16-x2 ⇒x=10⇒x=10
BC = 32-2x = 32-20 = 12 cm
Hence, required area = 12*BC*AD12*BC*AD= 12*12*1012*12*10 = 60 sq cm
Let AB = AC = x then BC= 32-2x [because parameter = 2 (side) + Base]
since in an isoceles triange the altitude bisects the base so
BD = DC = 16-x
In a triangle ADC, (AC)2=(AD)2+(DC)2AC2=AD2+DC2
x2=82+(16−x)2x2=82+16-x2 ⇒x=10⇒x=10
BC = 32-2x = 32-20 = 12 cm
Hence, required area = 12*BC*AD12*BC*AD= 12*12*1012*12*10 = 60 sq cm
Similar questions