. The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.
plz answer
Answers
Answered by
4
Step-by-step explanation:
Let the base of the triangle be x cm
Then its altitude =x-7.
Hypotenuse =13cm
By pythagoras theorem
x^2 +(x-7)^2=13^2
x^2+x^2+7^2-14x=169
2x^2+49-14x=169
2x^2-14x=120
2x^2-14x-120=0
x^2-7x-60=0
x^2-12x+5x-60=0
x(x-12)+5(x-12)=0
x=12 x=-5
Since the base cannot be negative, base is 12 cm. The altitude is 12-7=5cm.
Answered by
1
Answer
Let base be x
Therefore, altitude=x-7
Now,by pythagorus theorem,
∴(AC)²=(AB)² +(BC)²
∴(13)²=(x)²+(x-7)²
∴169=x²+x²-14x+49
∴x²+x²-14x+49-169=0
∴2x²-14x-120=0
∴2(x²-7x-60)=0
∴x²-12x+5x-60=0
∴x(x-12)+5(x-12)=0
∴(x-12) (x+5)
∴x=12 ; x=(-5)
As (-5) cannot be altitude,
∴x-7
∴12-7
∴5
∴Base=12 and altitude=5
Step-by-step explanation:
Similar questions