Math, asked by srisiva118, 9 months ago

the altitude of two similar triangles are 30 cm and 20 cm respectively . if one side of first triangle is 12 cm then determine corresponding side of second triangle​

Answers

Answered by Abhishek474241
14

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • Two similar ∆s
  • ∆ABC and ∆PQR
  • where Altitude of AD=30cm and PS =20
  • If AB=12

{\sf{\green{\underline{\large{To\:find}}}}}

  • Corresponding sides

{\sf{\pink{\underline{\Large{Explanation}}}}}

☞ ∆ABC ~ ∆PQR

\rightarrow\tt\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}

From Theorm

  • Sides of similar ∆ is proportional
  • to its Altitude
  • or angle bisector Side

Therefore From this Theorm

\rightarrow\tt\frac{AD}{PS}

\rightarrow\tt\frac{AD}{PS}=\frac{30}{20}

\rightarrow\tt\frac{AD}{PS}=\cancel{\frac{30}{20}}

\rightarrow\tt\frac{AD}{PS}=\frac{3}{2}

Now

\rightarrow\tt\frac{AD}{PS}=\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}

\rightarrow\tt\frac{3}{2}=\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}

\rightarrow\tt\frac{3}{2}=\frac{12}{PQ}

PQ=8

Hence values of PQ =8

Attachments:
Answered by ғɪɴɴвαłσℜ
12

Aɴꜱᴡᴇʀ

☞ PQ = 8 cm

_________________

Gɪᴠᴇɴ

➢ Altitude of 2 similar triangles are 30 cm and 20 cm

➢ One side of the first triangle is 12 cm

_________________

Tᴏ ꜰɪɴᴅ

☆ Corresponding side of the other triangle?

_________________

Sᴛᴇᴘꜱ

❍ Let us assume that the two triangles are ∆ABC and ∆PQR

We know that in similar ∆s

  • Sides of similar triangles are proportional to its altitude or angle bisector

  • Corresponding sides are of the same ratio.

That is,

\underline{\boxed{\sf{\green{\dfrac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}}}}}\\

\dashrightarrow\sf\dfrac{AD}{PS}\\

\leadsto\sf\dfrac{AD}{PS}=\dfrac{30}{20}\\

\leadsto\sf\dfrac{AD}{PS}=\cancel{\dfrac{30}{20}}\\

\leadsto\sf\dfrac{AD}{PS}=\dfrac{3}{2}\\

\leadsto\sf\dfrac{AD}{PS}=\dfrac{AB}{PQ}=\dfrac{BC}{QR}=\dfrac{AC}{PR}\\

\leadsto\sf\dfrac{3}{2}=\dfrac{AB}{PQ}=\dfrac{BC}{QR}=\dfrac{AC}{PR}\\

\leadsto\sf PQ = \dfrac{3}{2}=\dfrac{12}{PQ}\\

\leadsto\sf\dfrac PQ = {12\times2}{3}\\

\sf\pink{ \leadsto PQ = 8 cm}

______________________

Attachments:
Similar questions