Math, asked by ankush6213, 11 months ago

the amount of air present in a cylinder when a vacuum pump removes 1/4 of the air remaining in the cylinder at a time.

Answers

Answered by GalacticCluster
27

Answer:

Let

 \\  \qquad \sf \bullet \:  \: a_1 = x \\  \\  \\  \qquad \sf \bullet \:  \: a_2 = x -  \dfrac{1}{4}  \: x =  \dfrac{3x - x}{4}  =  \dfrac{3}{4}  \: x \\  \\  \\  \qquad \sf \bullet \:  \: a_3 =  \dfrac{3}{4}  \: x -  \dfrac{1}{4}  \: x \:  \bigg( \dfrac{3}{4}  \: x \bigg) \\  \\  \\  \implies \sf \:  \dfrac{3}{4}  \: x -  \dfrac{3}{16}  \: x \\  \\  \\  \implies \sf \:  \dfrac{12x - 3x}{16}  \\  \\  \\  \implies \sf \:  \frac{9}{16x}  \\  \\

Now,

 \\  \\  \sf \: a_2 - a_1 =  \dfrac{3}{4}  \: x - x =  \dfrac{ - 1}{4}  \: x \\  \\  \\   \sf a_3 - a_2 =  \dfrac{9}{16}  \: x -  \dfrac{3}{4}  \: x \\  \\  \\  \implies \sf \:  \dfrac{9x - 12x}{16}  \\  \\  \\  \implies \sf \:  \dfrac{ - 3}{16}  \\  \\  \\  \large{ \underline{ \boxed{ \sf{ \green{ \:  \because \: a_2 - a_1 \:  \neq \: a_3 - a_2}}}}} \\  \\

i.e, common difference is not same. Therefore, it is not in AP.

Similar questions